

A Group-Aware Middleware for Ubiquitous Computing
Environments

Dongman Lee, Seunghyun Han, Insuk Park, SaeHoon Kang,
Kyungmin Lee, Soon J. Hyun, Young-Hee Lee, and Geehyuk Lee

Information & Communications University,
Yusung-Ku, Taejon, 305-714, Korea

{dlee, dennis, ispark, kang, kmlee, shyun, yhlee, geehyuk}@icu.ac.kr

Abstract
In this paper, we present, Active Surroundings, a group-
aware middleware infrastructure for ubiquitous
computing environments. Our system focuses on two key
issues: group-awareness and transparent application
reconfiguration. To achieve these goals, Active
Surroundings is composed of four key component:
environment sensing for abstraction of environment
status and changes and tracing movements of a group of
users, context management for collection, identification,
and representation of user intention and resolution of
group context conflict, context-aware service discovery
for finding appropriate service based on context
information, and dynamic reconfiguration support for
dynamic reconfiguration of service objects with minimal
overhead.

Key words: Ubiquitous Computing, Group-Awareness,
Context-Awareness, Service Transparency, Middleware.

1. Introduction
With the advancement of the network and computer
technology, they are to become commodity in our daily
lives such as electricity and telephone. However, novice
users still face with difficulty since they are asked to
reconfigure their task when the existing environment
changes or a new environment is introduced due to user’s
location change. A main goal of ubiquitous computing is
to make the system, on behalf of a user, dynamically
adapt to the changes of a user environment, allowing the
user just focusing on his activity [6]. For this,
applications in a ubiquitous environment are required to
dynamically and transparently adapt to the changes of a
user context and/or an environment due to user mobility
and addition or deletion of devices and services, for
instance.

Several software infrastructures [1, 2, 4, 6] have been
proposed for development of ubiquitous computing
applications. Context awareness and dynamic
reconfiguration are key considerations in ubiquitous
computing middleware design among others such as
service discovery, robustness, privacy, etc [2]. Context
awareness is the ability of understanding user’s intention,

responding to the changes in the environment. Dynamic
reconfiguration of an application is required to make
applications transparently adapt to context changes. In
real world, users usually interact with others when they
perform their task. During the interaction, their intentions
may conflict and it is difficult to pre-define all the
conflict situations since interaction among people is
dynamic. And an application has to be designed to
reconfigure itself for adapting to a new context
dynamically. However, the existing systems either
provide no support of the group context or require
applications to specify the group context explicitly. In
these systems, binding the required services in the new
environment to a user application has to be done either in
a pre-defined way or diminished to only available
services when appropriate services are not available in
the environment.

We propose Active Surroundings as a ubiquitous
computing middleware infrastructure. The proposed
middleware supports not only key required services of
ubiquitous computing but also allows applications to
transparently deal with dynamics of group context and
seamlessly adapt to context changes. We assume that the
environment is inherently composed of heterogeneous
devices. The proposed system aims to support a group-
aware ubiquitous computing environment where the
system minimizes user involvements when users move
from one environment to another. Active Surroundings is
composed of four components; environment sensing,
context management, dynamic reconfiguration support
and context-aware service discovery, to enable users to
be free from intrusion by system or devices in shared
ubiquitous computing environments. The environment-
sensing component aims to sense context changes in an
active surrounding. The context management component
focuses on describing context information and deciding
context changes in an active surrounding. The context-
aware service discovery component dynamically
discovers and selects appropriate services according to
the context information such as user’s profile, location
and computing environment nearby. The dynamic
reconfiguration support component allows applications
to be polymorphically transformed based on the current
available resources and services without requiring user

intervention.

2. Related Works
Several prototypical systems for ubiquitous computing
environments are proposed. Gaia [15] is intended for a
middleware infrastructure for people-centric ubiquitous
computing environments. It focuses on resource-
awareness and user-centric environments. In terms of
group-contexts, The Gaia can handle conflicts occurred
by multiple actions triggered in a certain contexts. It uses
a priority to resolve a conflict, that is, if there were two
conflicting actions, the actions with the higher priority
wins. How-ever, only the statically pre-described context
at the time of designing the applications can be handled.
Gaia exploits the MVC model to separate application
logic and its presentation. It enables applications to be
dynamically bound with various output devices
depending on the user’s context. The binding information
is represented with application generic description
(AGD) and application customized description (ACD).
Gaia provides both user-initiated and automatic
mappings for binding. However, it requires applications
to be totally rebuilt-up with pre-programmed coordinator
when context change due to, for instance, user mobility,
occur.

Aura [5] aims to provide user distraction-free computing
environment where people can get services or perform
their jobs without interventions by system or
environments. It views user attention as one of scare
resources in ubiquitous computing environment. It
challenges to minimize distraction to users. It focuses on
architectural issues for service composition and
adaptation than context-awareness. The functionality of
the context observer merely depends on the sensors
deployed in the environment. Aura does not appear to
support the group context. It uses task-driven approach
to recon-figure applications to support nomadic users.
When environments changes occur, tasks are migrated to
current environment. However, it does not specify how
to sup-port task composition at run-time, how users
and/or application developers modify a task, and how to
support non-intrusiveness.

Reconfigurable Context Sensitive Middleware (RCSM)
[19] is a middleware designed to facilitate applications
that require context-awareness and ad-hoc
communication. It provides an object-based framework
for supporting context-sensitive application. It has two
key features. First, it is based on CORBA but core parts
are implemented in FPGA in order to achieve high
performance. Second, it is initiated based on specific
environmental conditions, rather than explicit application
invocation. However, it does not focus on activities of
group of users in ubiquitous computing environments. It
uses SA-IDL to define situations and SA-ADC is
automatically generated with the SA-IDL compiler.
However, the developer is responsible to generate the
code of the situation-aware object, which assumes that

the developer knows possible situations in heterogeneous
environments.

The CARISMA system also proposed a runtime conflict-
resolving mechanism [1]. It employs a particular type of
sealed-bid auction. However, the resolution for its inter-
and intra-conflict is just a selection of pre-described
candidate services, that is, it can only suggest a static
adaptation policy to the applications but no adaptation
policy is generated dynamically. Solar proposed the
operator graph which creates new contexts by
aggregating, merging, transforming and filtering given
contexts [3]. It does not support specification of user
applications. For user applications, it can incorporate
Java programs. Korpipaa et al. and Mantyjavi reported
context description gathered from sensors attached to a
mobile device using ontology [21]. The context
information is used to derive higher level contexts that
are more conceptual and insensible using a naïve Bayes
classifier. It also provided application programming
interface (API) for the context management to help
develop user applications. User applications are con-
trolled by a Fuzzy rule base and adapt to given contexts
according to the result of AND operation of fuzzy
membership of contexts. Many research projects on the
con-text management describe their environments using
ontologies proposed by the Se-mantic Web research
groups such as DAML+OIL and OWL [1], [12], [14],
[15]. Ontology is a kind of classification for entities or
contexts which consist of an environment, a knowledge
base for inferring the intention of users and higher level
con-texts, a common terminology and a shared set of
concepts of various contexts to sup-port interoperability
between context-aware applications.

CAP focuses on coordination of the adaptive behavior of
multiple applications in order to achieve a goal on a
system-wide level [4]. It uses event-driven policy
description language derived from event calculus logic to
specify policies. However, it does not support for
distributed adaptation coordination where multiple
devices are available. GAS aims to provide a framework
which assists ordinary users in reconfiguring or shaping
their environments, like Lego blocks [7]. It is possible
users to shape their environments as needed, however, it
is too intrusive to force users to configure their
environment when context changes occurs. It still works
in progress to support dynamic adaptations and mappings
among Plugs which provide transparent application
reconfiguration.

3. Key Considerations
To enable a ubiquitous computing environment, it is
essential that systems or applications not only aware the
current context of the environment but also ask minimal
involvement of users to reconfigure the system, adapting
to the context. To meet the requirements, we focus on
group-awareness as well as individual context, and
transparent application reconfiguration with minimal user

involvement.

3.1 Group-Awareness
Context-awareness enables a ubiquitous computing
system to adapt to users proactively without distracting
them. The existing context-aware applications are totally
independent of each other and every person has different
preferences, makes different decisions, and interprets
differently in the same context. It is possible for one
user’s context adaptation to interfere others’ interest by
accident in a shared environment. Thus conflicts among
them occur. It is unreasonable to provide services to a
single person by sacrificing others. Thus, we need to not
only consider the contexts of individual user but also put
them together into group context, a set of context of
individual users. In fact, group context is more than the
context of a collection of individual users. We take into
account contexts of individual users as group context in
terms of conflicts among them, harmonization, and a new
context comes out only when users are together as a
group. In this paper, we focus on the conflict of contexts
because it is a critical issue in the shared environment
where a set of personalized context-aware applications
run for different purposes independently.

3.2 Transparent Application Reconfiguration
Ubiquitous computing environments aim to provide
nomadic users to access and manipulate information
anywhere and anytime without directly dealing with a
computer and/or a network. When a user moves to a new
environment, his applications have to adapt according to
changes according to the resources available in the
environment and provide mechanisms to automatically
adapt their preferences with no or minimal involvement
of a user.

Fig. 1 Seamless Mobility Support

For instance, if a housewife wants to know washer
information about her house in the neighbor’s house with
her handheld device, the washer information should be

filtered between the same information generated from the
two houses without her explicitly notifying her intents.
We call it as anchored subscription. Another example is
that she activates a healthcare application, which notifies
temperature information because her disease is sensitive
to temperature, and visits neighborhood with her
handheld device. The healthcare application should
automatically change information channel to receive
temperature information from thermometer service run
on the neighborhood without user interventions. We call
it as localized subscription. Fig. 1 shows the situations
respectively.

4. Proposed Architecture
 A ubiquitous computing environment can be defined as
a place or environment where people can do their works
without considerations that computers or devices exist.
To support such an environment, following functionality
is essential: system should 1) sense environment changes
and 2) provide mechanisms to gather the sensed
information. The raw information should 3) be converted
to context information. With the context information, 4)
decision should be made itself to provide efficient
services to users without intrusion to the users. However,
all the services chosen by the decision engine may not be
available because environment is seamlessly changing
over time. 5) Service discovery mechanism is also
essential to discover currently available service based on
current context. New services or devices should 6) be
dynamically plugged into system without intervention of
administrator or users. The new service adaptation may
incur context changes in the environment. Thus, changed
information should 7) be distributed to other entities in
the environment.
To accomplish the considerations and basic requirements
described above, our middleware is composed of four
components: dynamic reconfiguration support, context
management, environment sensing, and service
discovery. Fig. 2 shows overall architecture of proposed
system.

Fig. 2 Overall Architecture

4.1 Context Management
Context-awareness enables a ubiquitous computing
system to adapt to users proactively without distracting

them. In many research works [3], [17], contexts are in
forms of digitized data taken from various types of
sensors. It represents some features of a physical
environment such as humidity, a sound level, and so on.
Some other approaches define contexts which include
non-sensory inputs such as the role of a user, application
running on the computer, list of websites that have been
visited, and the daily schedule. Context-aware
applications interpret the contexts collected from various
sources, and then, deliver services or adapt themselves to
what a user wants to make them in given contexts in
advance.

However, since the existing context-aware applications
are totally independent of each other, it may intrude
others’ interest by accident in a shared environment
where conflicts among them frequently occur. Thus we
need to not only consider the contexts of individual user
but also put them together into a group-context, a set of
context of individual users. In fact, a group context is
more than the context of a collection of individual users.
We take into account contexts of individual users as
group-contexts in terms of conflicts among them,
harmonization, and a new context comes out only when
users are together as a group.

Fig. 3 Context Management Component Architecture

 In a group-aware environment, the context management
coordinates context-aware applications so that they do
not sacrifice others unintentionally to achieve their goals.
To enable group-awareness in ubiquitous computing
environment, we define three components on top of
fundamental components for context management, which
are defined in other research prototype systems [3], [15].
As shown in Fig. 3, they are Group Abstraction Layer,
Conflict Resolver, Adaptation Manager, and Context
Harmonizer. The Context Acquisition component is also
one of fundamental components in context management.
In our approach, it has a role of detecting conflict and
harmonization between context-aware applications as
well as identifying user’s intention from contexts. To
detect a conflict, we introduce two dedicated user
preferences, intention and desire. The intention
represents is an abstract service type that a user wants to
take when he is in an activity, e.g., turn lights on when

she opens a door. The desire represents a list of abstract
service types that a user does not want to take when she
in a state, e.g., turn lights on when she sleeps in a bed.
The Context Acquisition detects a conflict a user’s
intention matches the other’s desire in the same context.
The Group Abstraction Layer hides the underlying
details of group context management from context-aware
applications. The applications do not know about a
conflict in a way that the Group Abstraction Layer
intercepts the notification of conflict detection and
provides the adaptation profile with the Conflict
Resolver and the Context Harmonizer. The Conflict
Resolver and Context Harmonizer make a decision how
to adapt both applications which participate in the group-
context based on the adaptation pro-file. Details of
conflict management are described in [13].

4.2 Dynamic Reconfiguration Support
Ubiquitous computing environments inherently compose
of heterogeneous devices and services. Currently
available services or resource could not be available in
the near future because context is seamlessly changing
over time. System also should be evolving over time in
order to incorporate those changes. However, it is
impossible to predict and prepare all available services
or resources before system starts up. To support such an
environment, Dynamic Reconfiguration Support aims to
provide polymorphic service composition which
dynamically changes applications’ form to fully leverage
current available resources.

Dynamic Reconfiguration Support is composed of
mainly three component, service interaction broker,
application framework, and adaptation support as shown
in Fig. 4. Service interaction broker not only provides
common communication facilities among objects but also
support seamless application mobility. We use
publish/subscribe event model as communication model
because it gives flexibility by decoupling event sources
from sinks and binding them as needed at runtime.
Application framework component provides application
model and interfaces to application developers and gives
clear separation between application and middleware.

To support seamless application mobility (anchored and
localized subscription described in section 3.2, we
exploit two concepts, link objects and sub-typing. Link
objects hold event subscription information of an
application as an object. When a user moves to another
environment, the link object is passed in order to rebind
application with the information. With the link object, it
is possible for a target application to be transparently
bound with locally available services without direct
involvement of the application such as parsing
application script information. Details of link object
concept are described in [10]. When a user moves to a
new environment, it is not always possible to assume that
all the service objects or resources required by the user
are available. To overcome this, we propose the sub-

typing concept. Suppose that the event type a’ is a sub-
type of the event type a and object A wishes to subscribe
to the event type a’. If only the event type a is available
in the environment, the application is bound with the
event type a, instead of event type a’. This allows
applications to be dynamically bound with available
services by exploiting the key concept of sub-typing,
principle of substitutability [11]. Details of subtyping
based adaptation mechanism are described in [9].

Fig. 4 Dynamic Reconfiguration Support Architecture

Dynamic Reconfiguration Support intimately cooperates
with Context Manager and Context-Aware Service
Discovery. For example, context change decided by
Context Management may trigger new service
adaptation. Dynamic Reconfiguration Support uses
Context-Aware Service Discovery to search currently
available services to be suitable to the context change.
To adopt new service, it should check and verify avail-
able resources or resource conflicts among services to
avoid service crush or malfunctioning of applications.

4.3 Environment Sensing
One of the most frequently quoted keywords that
characterize ubiquitous computing is invisibility;
computers in ubiquitous computing should not wait for
an explicit command from the user but should go out to
monitor the current state of the user and the environment
and make an active decision. The minimal list of
environment variables that computers need to keep track
of will be the physical state of the user (position,
orientation, and so on) and the state variables of the
environment (temperature, humidity, illumination, and so
on). Among other types of environment data, the current
de-sign of Environment Sensing is mainly focused on the
positioning of the user, i.e., tracking of the position and
orientation of the user using RF array technology. It
shares the basic operating principle with RF intensity
based positioning systems such as RADAR, but is
designed to provide a resolution high enough to support
ubiquitous computing applications at home. Moreover, it
aims at providing both position and orientation
information, which is not very common in RF-intensity
based systems.

The sensing module consists of an array of RF-intensity
sensing elements and an array controller that keeps array
elements in synchrony. RF signals from trackers worn by
the users and appliances are periodically collected by the
controller and will be sent to the signal processing

subsystem. The two main components of the signal
processing subsystem are Position Estimator and
Orientation Estimator. Both modules utilize a kind of
curve-fitting algorithm that minimizes errors between
observed intensity values and reference intensity data.
Raw estimation data from the signal processing
subsystem will be pushed to the position database
subsystem that consists of many Actor objects and one
Observer object. An Actor representing an object in the
environment (a user or an appliance) keeps track of the
physical state of the object. Its unique role, however, is
to utilized constraint relation with other Actors in order
to refine the raw position information provided by the
signal processing module. Also, it provides an interface
that gives the position information of other object from
its own perspective. The Observer keeps track of relative
position information of Actors and maintains virtual
actors which represent groups. The primary consumer of
the position information in the current framework will be
Context Manager. Fig. 5 shows the location tracking
component in Environment Sensing.

Fig. 5 Location Tracking Component Architecture

4.4 Context-Aware Service Discovery
We expect that there will be so many same/similar
service instances in ubiquitous computing environments.
For example, multiple TVs or other display devices will
be equipped in the future home. However, traditional
service discovery protocols [22], [23], [24], [25] which
use property based matching mechanisms, can not
provide filtering functionality enough for applications to
select optimal service instance, that is, they can’t decide
which service instance is most relevant to the
application’s current situation. For selecting most
appropriate one among multiple same service instances,
service discovery should be aware of context information
of applications. Service instances are evaluated based on
the extent of fitness to current context such as current
location, or preferences.

To achieve this, Context-Aware Service Discovery needs
the following components; Context Constraints, Context
Information Extractor, and Service Evaluator. To

evaluate service fitness, Context-Aware Service
discovery should know which context in-formation is
relevant to the required service and how to evaluate
fitness of service instance to relevant context. We call
this information as Context Constraints. Next, Context-
Aware Service Discovery should get needed context
information value ac-cording to the context constraints.
Context Information Extractor provides Service
Evaluator with context value needed for service
evaluation. Service Evaluator evaluates discovered
service instances using evaluation rule embedded in
context constraints and context value provided by
Context Information Extractor. Finally, most relevant
service to the context constraints is returned to the
service discovery requestor. Fig. 6 shows that the overall
architecture of Context-Aware Service Discovery
Component.

Fig. 6 Context-Aware Service Discovery Architecture

5. Prototype Implementation
The prototype system consists of five major components:
Service Interaction Broker, Context Manager, Dynamic
Reconfiguration Manager, Context-Aware Service
Discovery Manager, and Environment Sensing Manager.
Service Interaction Broker enables other components
communicate with each other by publishing and
subscribing events. A component wanting to publish an
event, creates an instance of ASEvent class, sets some
parameters, and publishes it to the Service Interaction
Broker by calling publish() method in ASEventManager
class. On the other hand, a component, which wants to
receives events of a specific type, should implement
ASEventHandler interface and subscribe to a specific
type of events by calling subscribe() method in
ASEventManager class. When an event is published by
some components, Service Interaction Broker delivers
the event to other components that have subscribed to the
type of the published event and notifies by calling
handleEvent() method of the components. Dynamic
reconfiguration manager takes the responsibility for
performing a task that is composed of several services. It
maintains the task-to-service mappings to determine the
required services to perform a task. It also monitors the
resource usages and then detects a resource conflict.
Context manager manages the context information in the
ubiquitous computing environment. It receives

environment sensing information from environment
sensing manager (various types of sensors or input
devices) and transforms the raw information to the
context information. Then, it identifies the task that
should be performed from the context information. It
also is responsible for resolving the conflicts between
users. Service discovery manager maintains the list of
services available in an environment. When receiving a
search request from dynamic reconfiguration manager, it
finds the proper services that match some service
specification and context constraints and replies the
information to dynamic reconfiguration manager.
Environment sensing manager now consists of two types
of sensors: the first is RF sensor and the second is Free
Mouse. RF sensors detect some user actions and send
that information to context manager. Free Mouse, which
acts as input devices of a user, also detect user actions
and send that information to context manager. Fig. 7
shows the interaction diagram among components.

Environment
Sensing
Manager

Context
Manager

Service
Discovery
Manager

Dynamic
Reconfiguration

Manager

1. sense and identify a user action

2. publish a sense event
(user_id, src, dest) 3-1. identify a task (task_id)

3-2. detect and resolve user interest conflict
3-3. decide task requirements and context constraints

4. publish a task execution request event
(user_id, task_id, task_req, ctx_constraint)

5. identify service
type (svc_type)

6. publish a service discovery request event
(svc_type, task_req, ctx_constraint, # of svcs)7-1. transform task requirements to service

specifications (svc_spec)
7-2. transform task-level context constraints to
service-level context constraints
7-3. search and evaluate services

8. publish a service discovery reply event
(svc_list=[svc_name, svc_spec, ?)

9. detect
resource conflict

10. publish a conflict resolution request event
(new_user_id, old_user_id)

12. publish a conflict resolution reply event
(res_spec)

11. resolve the conflict

13. load and execute
the service

Fig. 7 Brief Interaction Diagram among Components

With prototyped middleware, we build ubiquitous home
environment, called Digital Butler, as shown in Fig. 8,
which primarily aims to minimize administration
overheads of residents and to provide personalized
service with internet-enabled appliances for near-future
home environment.

Fig. 8 Prototyped Digital Butler

5. Concluding Remarks
In a ubiquitous computing environment, computers and
networks become part of the environment and not
directly visible unlike today. In this paper, we propose
Active Surroundings, a middleware infrastructure for a
ubiquitous computing environment where entities such as
services and devices actively response to user actions or
help users to perform their jobs according to the current
context of users. We focus on group-awareness and
transparent and seamless application reconfiguration. For
these goals, our middleware is composed of four main
components such as Environment Sensing, Context
Management, Context-Aware Service Discovery, and
Dynamic Reconfiguration Support to meet the
requirements of ubiquitous computing environments. The
proposed middleware allows applications to handle
runtime detection and resolution of context conflicts
among group members. To detect a conflict, two
dedicated user preferences, intention and desire are
introduced. An intention is asserted in the system when a
user is in a certain activity and a desire is asserted when
in a state. A conflict is detected when the intention of a
user is matched with the desire of the other. We
introduce the link object and exploit sub-typing to
support transparent dynamic reconfiguration. With the
link object, an application is bound once to the require
service types via link objects. Even when the user
context changes due to user mobility, only the link object
is reconfigured with appropriate service in a new
environment and the application does not need to be
involved. Furthermore, when the required service is not
available in the new environment, its super-type instance
is sought instead and bound if exists. The sub-typing
based event subscription gives flexibility in
heterogeneous environments.
We have prototyped the proposed middleware and
currently focus on application framework which
leverages presentation/semantic split application model
as well as context-aware naming which aims to provide
high-level service name transparency. We are revising
and experimenting our conflict detection and resolution
method with our prototype to improve its effectiveness.
We also work on high-level context modeling and
representation with the Semantic Web ontology for
inferring group context from a collection of individual
contexts.

References
1. Capra L., Emmerich W., and Mascolo C. “CARISMA:
Context-Aware Reflective Middleware System for
Mobile Applications,” IEEE Trans. on Software
Engineering, Vol. 29. (2003) 929-945.
2. Chen H. “An Intelligent Broker Architecture for
Context-Aware Systems,” PhD. dissertation proposal, the
University of Maryland Baltimore County. (2003)
3. Chen G., and Kotz D. “Solar: A pervasive-computing
infrastructure for context-aware mobile applications,”

Dartmouth College Technical Report, TR2002-421,
(2002).
4. Efstratiou, C., Friday, A., Davies, N., and Cheverst, K.
“A Platform Supporting Coordinated Adaptation in
Mobile Systems,” 4th IEEE Workshop on Mobile
Computing Systems and Applications 20-21 June
(WMCSA’02) 128 – 137.
5. Garlan, D., Siewiorek, D., Smailagic, A., and
Steenkiste, P. “Project Aura: Towards Distraction-Free
Pervasive Computing,” IEEE Pervasive Computing, Vol.
1, No. 2, (2002), 22-31.
6. Guttman, E., Perkins, C., Veizades, J., and Day, M.
“SLP, Ver. 2,” http://www.rfceditor.org/rfc/rfc2608.txt,
(1999).
7. Kameas, A., Bellis, S., Mavrommati, I., Delaney, K.,
Colley, M., and Pounds-Cornish, A. “An Architecture
that Treats Everyday Objects as Communicating
Tangible Components,” 1st IEEE International
Conference on Pervasive Computing and
Communications (PerCom’03), 23-26 March (2003)
115-122.
8. Kindberg, T., and Barton, J. “A Web-based nomadic
computing system,” Computer Networks, 35, (2001),
443-456.
9. Lee, D., Han, S., Lee, K., and Kim, M. “A Behavioral
Subtyping-based Application Adaptation Scheme for
Ubiquitous Computing Environments”, Technical Report,
TR-CS-20040730, available at http://cds.icu.ac.kr
10. Lee, K., Han, S. and Lee, D. “Service Interaction
Broker for Ubiquitous Computing Environments,”
Technical Report, TR-CS-20040820, available at
http://cds.icu.ac.kr
11. Liskov, B., and Wing, J. “A behavioral notion of
subtyping,” ACM Tran. Prog. Lang. and Systems, Nov.
1994.
12. Masuoka R., Labrou Y., Parsia B., and Sirin E.
“Ontology-Enabled Pervasive Computing Applications,”
IEEE Intelligent Systems, Vol. 18, (2003) 68-72.
13. Park, I., Hyun, S., and Lee, D., “Context-Conflict
Management for Context-aware Applications in Group-
aware Ubiquitous Computing Environments,” Technical
Report, TR-CS-2004017, available at http://cds.icu.ac.kr
14. Rakotonirainy, A., Indulska, J., Loke, S., and
Zaslavsky, A. “Middleware for Reactive Components:
An Integrated Use of Context, Roles, and Event Based
Coordination,” IFIP/ACM International Conference on
Distributed Systems Platforms, Heidelberg, (2001), 77-
98.
15. Ranganathan A., Campbell R. “An Infrastructure for
Context-Awareness based on First Order Logic,” Journal
of Personal and Ubiquitous Computing, Vol. 7. (2003)
353-364.
16. Román, M., Hess, C., Cerqueira, R., Ranganathan, A.,
Campbell, R., and Nahrstedt, K. “Gaia: A Middeware
Infrastructure to Enable Active Spaces,” IEEE Pervasive
Computing Magazine, Vol. 3. (2002) 74-83.
17. Van Laerhoven K., and Aidoo K. “Teaching Context
to Applications,” Journal of Personal and Ubiquitous
Computing, Vol. 5. Feb. (2001) 46-49

18. Weiser, M. “The Computer for the 21st Century,”
Scientific American, 265(3), September (1991) 94-104
19. Yau, S., Karim, F., Wang, Y., Wang, B., and Gupta,
S. “Reconfigurable Context-Sensitive Middleware for
Pervasive Computing,” IEEE Pervasive Computing
Magazine, Vol. 3, (2002), 33-40.
20. Zhao, W., Schulzrinne, H., Guttman, E., Bisdikian,
C., and Jerome, W. “Select and Sort Extensions for the
Service Location Protocol,” IETF RFC 3421, (2002)
21. Korpipaa P., Mantyjarvi J., Kela J., Keranen H., and
Malm E. “Managing context information in mobile
devices,” IEEE Pervasive Computing, Vol. 2, (2003) 42-
51.
22. JINI, http://www.jini.org
23. Salutation, http://www.salutation.org
24. Semantic Web, http://www.w3.org/2001/sw/
25. UPnP, http://www.upnp.org

