

Towards a Semantic Contexts Maintenance Model*
Young-Tack Park, Hee-Dong Ko+, We-Duke Cho++
School of Computing, Soongsil University, Seoul, South Korea

+IMRC, Korea Institute of Science and Technology, Seoul, South Korea
++Ubiquitous Frontier Office, Ministry of Science and Technology, Suwon, South Korea

park@comp.ssu.ac.kr, +ko@kist.re.kr, ++chowd@ajou.ac.kr

Abstract
In ubiquitous computing, applications and services must
be adapted to changing contexts in highly dynamic
environments. In order to build such adaptive ubiquitous
applications, maintaining the coherence of a context
becomes an essential problem. A context-aware
application requires an appropriate context maintenance
model for maintaining the coherences of contexts. We
suggest two kinds of contexts, context predicates and
semantic contexts, to represent richer contexts in
ubiquitous environment using ontologies. In this paper,
we propose a semantic context maintenance model to
provide an automatic method for maintaining coherence
of semantic context databases. Semantic context
maintenance model adds semantic contexts to the
context model only when they are justified and
automatically remove the semantic contexts if their
justifications go away. Based on our semantic context
maintenance model, ubiquitous applications can reason
about context models free of contradictions.

Key words: Semantic Contexts, Ontology, Context
Maintenance Model

1. Introduction
Context awareness is becoming an essential feature of
ubiquitous services that assist our everyday lives. Dey et
al [1]. defines contexts as any information that
characterize a situation and that are relevant to the
interaction between a user and its application. By
contexts, we refer to any information from ubiquitous
sensors and inferred information based on associated
ontologies. 1

Context predicates are generated based on sensor inputs.
For instance, when ubiquitous sensors detect a person
entering a room, a context predicate, enter(person-id,
room-number, time), is generated. These context
predicates represent events occurred in ubiquitous
environments. In ubiquitous computing, many RFID,
UWB, IR, smart floor sensors can be used to generate
context predicates when meaningful events occur.

* This research is supported in part by the Ubiquitous Autonomic
Computing and Network Project, the Ministry of Science and
Technology (MOST) 21st Century Frontier R & D Program in Korea

A number of context-aware systems have been
developed to represent contexts explicitly [2,3]. In order
to provide richer contexts, we categorize contexts into
contexts predicates and semantic contexts. By contexts
predicates, we mean any information that is collected
from ubiquitous sensors. They may be a presence of
person, status of devices, temperatures, to name a few.
Contexts predicates can be essential in context model.

These context predicates are very useful for ubiquitous
agents. However, we need richer semantic contexts as
well. For instance, when a person enters his/her room,
the context predicate, enter(person-id, room-number,
time), does not represent that s/he enters his/her room. In
order to represent richer contexts, we can employ
domain specific inference engine but this approach
seems to be limited. Instead, we propose an approach
using ubiquitous ontologies.

Semantic context is proposed to represent richer contexts
using relevant ontologies. Semantic contexts can provide
richer high-level contextual information to ubiquitous
applications. We employ context inference engines to
infer ontology-based contexts based on observed context
predicates. However, observed context predicates need
to be removed and all the inferred semantic contexts
from them need to be maintained as well. For instance,
when a person enters his/her room, many semantic
contexts are generated based on ontological inferences.
When the person leaves the room, it is necessary to
retract all the semantic contexts generated. So, we need a
system to maintain the consistencies of semantic
contexts. Contexts predicates are labeled “in” or “out” to
indicate whether the observed context is believed in the
situation. For instance, when a person enters a room, the
observed context node, person_enter_the_room,
becomes “in”. Later, if the person leaves the room, the
observed context, person_enter_the_room, becomes
“out” .

Ubiquitous systems need to maintain a model of the
current context that can be shared by all the ubiquitous
agents. If ubiquitous system maintains context model, it
becomes very complex. In order to maintain coherences
and consistent inferred contexts, we propose a semantic
context maintenance model that is a collection of
automatic methods for maintaining the contexts.
Semantic context maintenance model apply in dynamic

situation where certain sets of observed context
predicates are considered contradictory and the system
must make sure that the semantic context model remains
free of contradiction. Semantic context maintenance
model can be used within ubiquitous systems in
conjunction with ubiquitous agents to manage as a
context dependency network the agent’s beliefs in given
situations. In this paper, we describe semantic contexts
and a semantic context maintenance model to maintain
the semantic contexts. In section 3, we will present the
overview and motivation of our works on semantic
contexts and semantic context maintenance. In section 4,
the detailed semantic context maintenance model is
described.

2. Related Works
In this paper, we propose concepts of semantic contexts
and a semantic context maintenance model. The idea
comes from using ontologies in modeling contexts.
Contexts become useful only when they can be used for
ubiquitous agents. Contexts play a role as a producer and
ubiquitous agents consume contextual information to
provide useful services to persons in ubiquitous
environments. It is widely accepted using ontologies in
ubiquitous agents. In previous works, context models
using ontologies have been proposed and ontologies are
supposed to ease shared understanding about contexts
between different systems.

In Gaia [4], a context model is based on context
predicates. They use first order predicate logic to
represent contexts. An example context predicate in Gaia
is location(chris, entering, room3231). In order to
represent higher-level contexts, they employ rule-based
context synthesizer. Gaia uses ontologies for checking
validity of context predicates not for providing higher-
level contexts. The structures of different context
predicates are specified in ontology. Anand et al. [4]
used the ontology to check the validity of context
predicates rather than describe richer context
information.

Confab’s data model [6] is used to represent contextual
information, such as one’s location or activity. Logical
storage units, called InfoSpaces, store context data about
people, places, things, and services. Sources of context
data, such as sensors, can populate infospaces to make
their data available for use and retrieval. In Confab,
context tuples are used to represent static pieces of
contextual information as well as dynamic contextual
information. Context tuples seem to be a way to
represent contextual information without using
ontologies. In addition, context tuple can also optionally
have a privacy tag because Confab was designed to be
effective in helping end-users manage their privacy.

Harry Chen et al [3] uses the COBRA ontology for
enabling knowledge sharing and ontology reasoning
based on OWL language. Harry Chen’s reasoning

engine is responsible for reasoning with ontology
knowledge that is static knowledge and contextual
knowledge. The former is derived from the underlying
ontology model and the latter is dynamic knowledge that
is inferred from acquired situational information. Our
approach is similar to Harry Chen’s but is more modular
in ontological reasoning. Harry Chen’s context broker
agents reason about the situational contexts using
ontological reasoning. Each agent has its own reasoning
space and some redundant reasoning might be done in
separate agent spaces that share the same reasoning
steps. Instead, our approach uses common semantic
contexts to be used by agents and can resolve the
problem.

We use ontologies to generate semantic contexts in
ubiquitous systems. Semantic contexts represent higher-
level contexts as in Gaia. While Gaia uses rule-based
context synthesizer, we employ ontologies that provide
partially pre-defined background knowledge in
generating contexts in real time. Ontology provides a
vocabulary for representing objects and describing
situations in ubiquitous environments. Context ontology
defines a common vocabulary to share context
information. Context ontology is used to describe
ubiquitous dynamic events by instantiating appropriate
ontology instances automatically. Semantic context
generator generates semantic contexts based on ontology
instances from observed context predicates. We use Web
Ontology Language OWL to infer semantic contexts.
Ontologies provide richer explicit semantic meanings of
observed situations. To represent observed situations, we
build diverse ontologies such as human, space, device,
etc. Temporal ontology is used to describe temporal
events and temporal relations between events.

3. Overview of Semantic Context Maintenance
Semantic context generator needs an ability to
hypothetically infer semantic contexts that may be
retracted later. Semantic context generator requires
bookkeeping process to maintain the consistency of
semantic contexts in real time. In ubiquitous
environments, many events occur and fade away.

When an event occurs, a context predicate is generated
and many semantic contexts are inferred. It is necessary
to retract inferred semantic contexts later if the event
disappears. Figure 1 shows the overview of architecture
we propose for semantic context awareness and semantic
context maintenance.

The fundamental architectural observation is that the
semantic context awareness engine can be decomposed
into two parts: a semantic context generator and a
semantic context maintenance system. This partitioning
allows the semantic context generator to focus on
drawing ontological inferences and the semantic context
maintenance model to focus on consistency of semantic

contexts. Semantic context maintenance system employs
an assumption-based truth maintenance system [5] used
in artificial intelligence. During context generation, the
semantic context generator and the semantic context
maintenance system continuously interact in a well-
defined protocol. Every important inference made by the
semantic context generator is communicated to the
semantic context maintenance system as a justification.
Semantic context maintenance system records the
justifications and resolves the undo problems in context
generation.

Ontology axioms define subsumption relations between
ubiquitous classes. Temporal and spatial axioms are used
to represent temporal and spatial relations between
ubiquitous events. Basically, context inference engines
use backward inferences to answer the requests by
agents. However, context inference engines triggers
forward chaining rules to derive contexts useful for
answer.

Whenever, context inference engine makes inferences, it
passes associated axioms and ubiquitous situations to
context maintenance system. The reasons we employ
context maintenance system are two folds. First, in
ubiquitous environments, most objects are mobile. For
instances, human and ubiquitous objects move in and out
and again they come in. When they move in, context
inference engine generates all the relevant contextual
information by triggering context inference axioms.
And, if they move out, all the inferred contextual
information must be removed from the model. However,
when they move in again, the same things have to be
repeated. So, we need to keep context dependency
structure to enhance the performance of context
inference engines. Second, context information is
supposed to be shared by ubiquitous agents. Context
maintenance system maintains observed and inferred
contexts free of contradiction to be used by many agents.
If the context maintenance system receives requests from
an agent which were processed before for another
agents, the system can provide answer to the agent
without reasoning from the scratch.

4. Semantic Context Awareness

Semantic context represents richer high level contextual
information from context predicates based on
ontological reasoning. Figure 2 describes the basic idea
of semantic contexts. Context predicates are generated
from ubiquitous sensors. As shown in Figure 2, a context
predicate, enter(Kim, Room101), is generated. Semantic
context generator fetches associated ontology instances
to reason about current situation. In this example, two
ontology instances, Kim and Room 101, are retrieved for
generating semantic contexts. We assume that Choi
already entered the room.

Based on given context predicate and retrieved
associated ontologism, semantic context generator infers
semantic contexts. In this example, semantic context
generator learns from Kim’s ontology that Mr. Kim is a
doctor, his office is room 101, and his patient is Mr.
Choi. Similarly, semantic context generator learns that
Mr. Choi is in the room 101 and the temperature of room
101 as well. Initially, ontology instance is a partially
instantiated background information. And, as ubiquitous
sensors provide information to the context generator,
related ontology instances become instantiated. Initially,
room 101 ontology instance is partially instantiated.
However, RFID sensors may detect the presence of Mr.
Choi’s Smart tags and semantic context generator
instantiate the occupant slots of the room 101 ontology
instances.

We assume that semantic contexts are a collection of
high-level contexts used by ubiquitous agents to provide
personal services to humans. Ubiquitous agents may use
different their own reasoning mechanisms, but inform
semantic context generator of required semantic context
information. Semantic context generator collects all the
required vocabularies for servicing ubiquitous agents
and infers semantic contexts based on context predicates
and ontologies in real time. Hence, our approach uses
backward inferences from a set of given semantic
context vocabularies. Whenever semantic context

Fig. 1 Overview of Semantic Context Maintenance

Fig. 2 Semantic Context Awareness

Contexts

Ontology
Reasoning

Semantic
Context

enter(Kim, Room101)

Kim's
Ontology

Room 101's
Ontology

Choi's
Ontology

Kim enters his office to consult his patient Choi
who suffers from cancer.

Doctor

Office

Patient

Choi

Light

Patient

Dr. Kim

Cancer

uT Environments

uT
agent

uT
agent

uT
agent

uT Semantic
Contexts

uT
Ontology

Context
Maintenance

Model

uT Contexts

generator generates a semantic context, it looks up index
files to identify relevant ubiquitous agents and triggers
the agents. This architecture enhances the performance
of ubiquitous agents and alleviates the redundant
inferences made by each agent otherwise.

 As given a context predicate, enter(Kim, Room101), the
semantic context generator fetches Kim’s and Room
101’s ontology instances. The semantic context
generator translates ontology instances into predicate
forms. This translation occurs when a new ontology
instance is introduced and existing ontology instance is
partially instantiated as sensors input new information.
When sensors provide new information, the semantic
context generator partially instantiates related ontology
instances in real time. Our system uses Jena [7] to
translate OWL instances into predicate forms.

In the example, the semantic context generator generates
the following semantic contexts:

status(Kim, Doctor). status(Choi, Patient).
office(Kim, Room101). doctor(Choi, Kim).
patient(Kim, Choi). suffer(Choi, Cancer)

And, ubiquitous agents inform semantic context
generator of semantic contexts such as
doctor_in_his_office and patient_in_his_doctor_office.
For instance, ubiquitous service agents, called doctor
agents, need to check whether doctor_in_his_office to
provide comfortable environments for the doctors who
enter his/her office. And, another agent may fetch patient
records to be examined by doctors when
patient_in_his_doctor_office context information is
detected. The semantic context generator collects such
semantic context information from ubiquitous agents and
reason about lower level context information to infer
higher level context information.

As described above, the semantic context generator
fetches Kim’s ontology instance. An ontology instance
has static and dynamic context data slots. Static context
data does not change and dynamic context data changes
in real time. For instance, the status slot of Dr. Kim’s
ontology instance and the owner slot of Room101’s
ontology instance are static context data slot. These
informations play background knowledge in semantic
context reasoning. And, the ownerin slot and the
occupant slot of Room101’s ontology instance are
dynamic context data. The semantic context generator
fills these dynamic context data slots in real time as
context predicates are generated based on inputs of
ubiquitous sensors. The following is an example of
OWL instance generated by semantic context generator.

<Doctor rdf:ID="Kim">
 <office>
 <Office rdf:ID="room101">
 <ownerin>true</ownerin>
 <occupant>
 <Patient rdf:ID="Choi">
 <suffer>Cancer</suffer>
 <status rdf:resource="#Patient"/>

 <doctor rdf:resource="#Kim"/>
 </Patient>
 </occupant>
 <occupant rdf:resource="#Kim"/>
 <owner rdf:resource="#Kim"/>
 </Office>
 </office>
<patient rdf:resource="#Choi"/>
<status rdf:resource="#Doctor"/>

</Doctor>

Semantic context generator uses backward chaining rules to
infer high-level semantic contexts to be used by ubiquitous
agents. In order to inference engine to reason, semantic context
generator translates OWL ontology instances into predicates.
Whenever a new OWL ontology instance is generated or slots
of existing ontology instances are updated, the translation
process is activated. Jena is used for the translation [7]. The
followings are predicate forms generated by Jena (after
removing OWL namespaces).

(type Kim Doctor) (office Kim room101)
(type room101 Office) (ownerin room101 true)
(occupant room101 Choi)(suffer Choi "Cancer")
(status Choi Patient) (doctor Choi Kim)
(occupant room101 Kim) (owner room101 Kim)
(patient Kim Choi) (status Kim Doctor)

These predicates are posted on the blackboard in the
semantic context generator. The semantic context
generator applies inference rules for generating semantic
contexts that may be used by ubiquitous agents. For
instance, the following Prolog rules are used to infer that
a doctor enters his/her own office and a patient enters
his/her doctor office.

doctor_in_his_office(Person, Room) :-
 type(Person, doctor),
 office(Person, Room),
 ownerin(Room, true).
patient_in_doctor_office(Person, Room) :-
 type(Person, patient),
 doctor(Doctor,Person),
 office(Doctor, Room),
 occupant(Room, Person).

Similarly, a situation where a doctor is consulting his/her
patient can be inferred by the following rule.

consultation(Doctor,Patient) :-
 doctor_in_his_office(Doctor, Room),
 patient_in_doctor_office(Patient, Room).

Based on backward reasoning, semantic context
generator generates the following semantic contexts:

doctor_in_his_office(Kim, Room101).
patient_in_doctor_office(Choi, Room101).
consultation (Kim, Choi).

Figure 3 shows dependencies between context predicates
and semantic contexts in temporal dimension. Each
context predicate is generated based on inputs of
ubiquitous sensors. Semantic context generator generates
semantic contexts based on ontologies and existing
semantic contexts. Every inferences made by semantic
context generator to generate semantic contexts is
communicated to the context maintenance system as a
justification. The justifications recorded by semantic

context maintenance system allow maintaining the
integrity of semantic context model dynamically.

5. Semantic Context Maintenance Model
Based on context ontology and forward/backward
inference rules, we generate semantic contexts. Each
inference step is recorded by context maintenance
system to maintain the context dependency structure. As
shown in Figure 3, each semantic context element is
justified by a set of justifications. For instance, semantic
context element E1, consultation (Kim, Choi), is the
consequent and it has two antecedents, element E2,
doctor_in_his_ office (Kim, Room101), and element E3,
patient_in_ doctor_office(Choi, Room101). This
dependency shows that element E1 becomes true when
both antecedent elements E2 and E3 are true.

Such structure enables context maintenance system
avoids “undo”. When a context predicate is popped off,
it is necessary to remove all the inferred semantic
contexts that were added when the observed context
predicate was available. Figure 4 shows the process of
undo without actual retraction of semantic contexts
elements. As described above, each semantic context
element is tagged by label as in ATMS [5]. When a
semantic context element is no longer believed in, the
label becomes out. As shown in Figure 4, suppose
patient Mr. Choi leaves Room 101. The semantic
context generator infers not enter(Choi, Room101) and
makes the element, enter(Choi, Room101), out. By

propagating the out, the semantic context generator
infers that no longer consultation(Kim, Choi) is true in
current contexts.

6. Representing Semantic Context Dependencies
In order to maintain dependencies between semantic
context predicates, ATMS(Assumption-based Truth
Maintenance System) [5,8] has been used. Figure 5
shows ATMS justification network built by the semantic
context maintenance system for the above example.

In Figure 5, meanings of ATMS assumption nodes are as
follows:

p:type(kim,doctor) q:ownerin(room101,true)
r:office(kim,room101) w:type(choi,patient)
x:doctor(kim,choi) y:occupant(room101,choi)
s:doctor_in_his_office(kim, room101)
t:patient_in_doctor_office(choi, room101)
g:consultation(ki, choi)

The semantic context generator and the semantic context
maintenance system continuously interact in a well-
defined protocol. Every important inference made by the
semantic context generator is communicated to the
semantic context maintenance system as a justification.
When semantic context generator fires rules in Section
4, it informs semantic context maintenance system of its
rule executions with the following protocols.

declare_assumption(office(kim, room101)),
declare_assumption(type(kim, doctor)),
declare_assumption(ownerin(room101, true)),
atms_add_just((ownerin(room101, true),

office(kim, room101),
type(kim, doctor)),

 doctor_in_his_office(kim, room101)),
declare_assumption(type(choi, patient)),
declare_assumption(doctor(kim, choi)),
declare_assumption(office(kim, room101)),
declare_assumption(occupant(room101, choi)),
atms_add_just((type(choi, patient),

doctor(kim, choi),
office(kim, room101),
occupant(room101,choi)),

 patient_in_doctor_office(choi, room101)),
atms_add_just((doctor_in_his_office(kim,

room101),
patient_in_doctor_office(choi,

room101)),
consultation(kim, choi)).

Fig. 3 Generation of Semantic Contexts

Fig. 4 Retraction of Semantic Contexts Elements

Fig. 5 ATMS Justification Network

tContext
Predicates

status(Choi, Patient)
doctor(Choi, Kim)
suffer(Choi, Cancer)

patient_in_doctor_office(Choi, Room101)

consultation (Kim, Choi)

Semantic
Context

Enter(Choi, Room101)

office(Kim, Room101)

doctor_in_his_office(Kim, Room101)

Leave(Choi, Room101)

¬ Enter(Choi, Room101)

Out

Out

Out

Out

P

q

r

w

x

y

j1

j2

s

t

j3 g

status(Choi, Patient)
doctor(Choi, Kim)
suffer(Choi, Cancer)

tContext
Predicate

status(Kim, Doctor)
office(Kim, Room101)
patient(Kim, Choi)

doctor_in_his_office(Kim, Room101

patient_in_doctor_office(Choi, Room101)

consultation (Kim, Choi)

Semantic
Context

Enter(Kim, Room101) Enter(Choi, Room101)

Semantic context maintenance model builds justification
structures and beliefs as follows:

holds(office(kim,room101),bitvec(1)).
holds(type(kim,doctor),bitvec(2)).
holds(ownerin(room101,true),bitvec(4)).
holds(doctor_in_his_office(kim,room101),

bitvec(7)).
holds(type(choi,patient),bitvec(8)).
holds(doctor(kim,choi),bitvec(16)).
holds(occupant(room101,choi),bitvec(32)).
holds(patient_in_doctor_office(choi,room101),
 bitvec(57)).
holds(consultation(kim,choi),bitvec(61)).

The notation, holds(Node,Env), means Node holds in the
environment Env. Node is a node in the justification
network and a context datum. Env is a set of
assumptions. Bitvec(7) is another notation of
bitvec(111), therefore bitvec(7) means logical OR of
bitvec(1), bitvec(2), and bitvec(4). This means that the
node doctor_in_his_office(kim,room101) whose Env is
bitvec(7) depends on three antecedent nodes office(kim,
room101), type(kim,doctor), ownerin(room101,true)
whose Envs are bitvec(1), bitvec(2), and bitvec(4),
respectively. As shown above, three semantic context
predicates, doctor_in_his_office(kim,room101), doctor_
in_his_office(kim,room101), and consultation(kim,
choi), are believed in the model.

 As described in Figure 4, suppose a patient Mr. Choi
leaves Room 101. This means that Mr. Choi is no more
an occupant of Room 101. In order to show this dynamic
situation, semantic context generator retracts the
associated assumption retract_assumption(occupant
(room101, choi)). Then semantic context maintenance
system identifies all the related Nodes by checking
bitvec database using indexed approach. The following
execution segments show that Mr. Choi is no more an
occupant of Room 101 and inferred facts from it are
retracted as well.

retracting assumption ---->

occupant(room101,choi)
retracting related node --->

patient_in_doctor_office(choi,room101)
 consultation(kim,choi)

Semantic context maintenance model holds belief
as follows without actual deleting the
retracted three nodes as follows.

holds(office(kim,room101),bitvec(1)).
holds(type(kim,doctor),bitvec(2)).
holds(ownerin(room101,true),bitvec(4)).
holds(doctor_in_his_office(kim,room101),

bitvec(7)).
holds(type(choi,patient),bitvec(8)).
holds(doctor(kim,choi),bitvec(16)).

Later, if Mr. Choi is back to Room101, then semantic
context maintenance model infers those semantic context
predicates,occupant(room101,choi), patient_in_doctor
_office(choi,room101), and consultation(kim,choi)
without building justification from the scratch.

The context maintenance system is used in ubiquitous
systems in conjunction with ubiquitous agents.
Ubiquitous agents need contextual information and
request information to semantic context generator in
order to perform their own tasks. The context
maintenance system records inferences to provide
information to the semantic context generator.

8. Conclusion
We propose semantic contexts to represent high-level
contexts using ontologies and the semantic context
maintenance system to provide automatic methods for
maintaining coherence of context databases. Semantic
context generator infers high-level semantic contexts
from a context predicate that represent a ubiquitous
event from diverse sensors. In order to improve
performance of semantic context generator, we suggest
the semantic context maintenance system using an
assumption-based truth maintenance system. Semantic
context maintenance system records justifications of
semantic contexts and adds semantic contexts to the
context model only when they are justified and
automatically remove inferred semantic contexts if their
justifications go away. Based on our context
maintenance system, ubiquitous applications can reason
about semantic context models free of contradictions.

References

1. Dey,A.K., Salber, D., and Abowd, G.D. A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications, Human-
Computer Interaction Journal, 2001, 16(2-3)
2. Jason Hong AND James A. Landay. An Infrastructure
Approach to Context-Aware Computing. Human-
Computer Interaction Journal, 2001. 16(2-3)
3. Harry Chen AND Tim Finin AND Anupam Joshi. An
Ontology for Context-Aware Pervasive Computing
Environments. In Workshop on Ontologies and
Distributed Systems, August 2003.
4. Anand Ranganathan AND Roy H. Campbell. A
Middleware for Context-Aware Agents in Ubiquitous
Computing Environments, In ACM/IFIP/USENIX
International Middleware Conference, 2003, Rio de
Janeiro, Brazil, June 16-20, 2003
5. Kenneth D. Forbus AND Johan De Kleer, Building
Problem Solvers, MIT Press, 1993
6. Jason I. Hong AND James A. Landay, Support for
Location: An Architecture for Privacy-Sensitive
Ubiquitous Computing, In Proc. of the 2nd Int. Conf. on
Mobile Systems, Applications, and Services, June 2004
7. Jena Toolkit, http://www.hpl.hp.com/semweb/
8. Yoav Shoham, Artificial Intelligence Techniques in
Prolog, Morgan Kaufmann Pub., Inc, 1994

