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Abstract 
In ubiquitous computing, applications and services must 
be adapted to changing contexts in highly dynamic 
environments. In order to build such adaptive ubiquitous 
applications, maintaining the coherence of a context 
becomes an essential problem. A context-aware 
application requires an appropriate context maintenance 
model for maintaining the coherences of contexts. We 
suggest two kinds of contexts, context predicates and 
semantic contexts, to represent richer contexts in 
ubiquitous environment using ontologies. In this paper, 
we propose a semantic context maintenance model to 
provide an automatic method for maintaining coherence 
of semantic context databases. Semantic context 
maintenance model adds semantic contexts to the 
context model only when they are justified and 
automatically remove the semantic contexts if their 
justifications go away. Based on our semantic context 
maintenance model, ubiquitous applications can reason 
about context models free of contradictions. 

Key words: Semantic Contexts, Ontology, Context 
Maintenance Model 

1. Introduction 
Context awareness is becoming an essential feature of 
ubiquitous services that assist our everyday lives. Dey et 
al [1]. defines contexts as any information that 
characterize a situation and that are relevant to the 
interaction between a user and its application. By 
contexts, we refer to any information from ubiquitous 
sensors and inferred information based on associated 
ontologies. 1 

Context predicates are generated based on sensor inputs. 
For instance, when ubiquitous sensors detect a person 
entering a room, a context predicate, enter(person-id, 
room-number, time), is generated. These context 
predicates represent events occurred in ubiquitous 
environments. In ubiquitous computing, many RFID, 
UWB, IR, smart floor sensors can be used to generate 
context predicates when meaningful events occur.  
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A number of context-aware systems have been 
developed to represent contexts explicitly [2,3]. In order 
to provide richer contexts, we categorize contexts into 
contexts predicates and semantic contexts. By contexts 
predicates, we mean any information that is collected 
from ubiquitous sensors. They may be a presence of 
person, status of devices, temperatures, to name a few. 
Contexts predicates can be essential in context model.  

These context predicates are very useful for ubiquitous 
agents. However, we need richer semantic contexts as 
well. For instance, when a person enters his/her room, 
the context predicate, enter(person-id, room-number, 
time), does not represent that s/he enters his/her room. In 
order to represent richer contexts, we can employ 
domain specific inference engine but this approach 
seems to be limited. Instead, we propose an approach 
using ubiquitous ontologies. 

Semantic context is proposed to represent richer contexts 
using relevant ontologies. Semantic contexts can provide 
richer high-level contextual information to ubiquitous 
applications. We employ context inference engines to 
infer ontology-based contexts based on observed context 
predicates. However, observed context predicates need 
to be removed and all the inferred semantic contexts 
from them need to be maintained as well. For instance, 
when a person enters his/her room, many semantic 
contexts are generated based on ontological inferences. 
When the person leaves the room, it is necessary to 
retract all the semantic contexts generated. So, we need a 
system to maintain the consistencies of semantic 
contexts. Contexts predicates are labeled “in” or “out” to 
indicate whether the observed context is believed in the 
situation. For instance, when a person enters a room, the 
observed context node, person_enter_the_room, 
becomes “in”. Later, if the person leaves the room, the 
observed context, person_enter_the_room, becomes 
“out” . 

Ubiquitous systems need to maintain a model of the 
current context that can be shared by all the ubiquitous 
agents. If ubiquitous system maintains context model, it 
becomes very complex.  In order to maintain coherences 
and consistent inferred contexts, we propose a semantic 
context maintenance model that is a collection of 
automatic methods for maintaining the contexts. 
Semantic context maintenance model apply in dynamic 



   

situation where certain sets of observed context 
predicates are considered contradictory and the system 
must make sure that the semantic context model remains 
free of contradiction. Semantic context maintenance 
model can be used within ubiquitous systems in 
conjunction with ubiquitous agents to manage as a 
context dependency network the agent’s beliefs in given 
situations. In this paper, we describe semantic contexts 
and a semantic context maintenance model to maintain 
the semantic contexts. In section 3, we will present the 
overview and motivation of our works on semantic 
contexts and semantic context maintenance. In section 4, 
the detailed semantic context maintenance model is 
described. 

2. Related Works 
In this paper, we propose concepts of semantic contexts 
and a semantic context maintenance model. The idea 
comes from using ontologies in modeling contexts. 
Contexts become useful only when they can be used for 
ubiquitous agents. Contexts play a role as a producer and 
ubiquitous agents consume contextual information to 
provide useful services to persons in ubiquitous 
environments. It is widely accepted using ontologies in 
ubiquitous agents. In previous works, context models 
using ontologies have been proposed and ontologies are 
supposed to ease shared understanding about contexts 
between different systems. 

In Gaia [4], a context model is based on context 
predicates. They use first order predicate logic to 
represent contexts. An example context predicate in Gaia 
is location(chris, entering, room3231). In order to 
represent higher-level contexts, they employ rule-based 
context synthesizer. Gaia uses ontologies for checking 
validity of context predicates not for providing higher-
level contexts. The structures of different context 
predicates are specified in ontology. Anand et al. [4] 
used the ontology to check the validity of context 
predicates rather than describe richer context 
information. 

Confab’s data model [6] is used to represent contextual 
information, such as one’s location or activity. Logical 
storage units, called InfoSpaces, store context data about 
people, places, things, and services. Sources of context 
data, such as sensors, can populate infospaces to make 
their data available for use and retrieval. In Confab, 
context tuples are used to represent static pieces of 
contextual information as well as dynamic contextual 
information. Context tuples seem to be a way to 
represent contextual information without using 
ontologies. In addition, context tuple can also optionally 
have a privacy tag because Confab was designed to be 
effective in helping end-users manage their privacy. 

Harry Chen et al [3] uses the COBRA ontology for 
enabling knowledge sharing and ontology reasoning 
based on OWL language. Harry Chen’s reasoning 

engine is responsible for reasoning with ontology 
knowledge that is static knowledge and contextual 
knowledge. The former is derived from the underlying 
ontology model and the latter is dynamic knowledge that 
is inferred from acquired situational information. Our 
approach is similar to Harry Chen’s but is more modular 
in ontological reasoning. Harry Chen’s context broker 
agents reason about the situational contexts using 
ontological reasoning. Each agent has its own reasoning 
space and some redundant reasoning might be done in 
separate agent spaces that share the same reasoning 
steps. Instead, our approach uses common semantic 
contexts to be used by agents and can resolve the 
problem. 

We use ontologies to generate semantic contexts in 
ubiquitous systems. Semantic contexts represent higher-
level contexts as in Gaia. While Gaia uses rule-based 
context synthesizer, we employ ontologies that provide 
partially pre-defined background knowledge in 
generating contexts in real time. Ontology provides a 
vocabulary for representing objects and describing 
situations in ubiquitous environments. Context ontology 
defines a common vocabulary to share context 
information. Context ontology is used to describe 
ubiquitous dynamic events by instantiating appropriate 
ontology instances automatically. Semantic context 
generator generates semantic contexts based on ontology 
instances from observed context predicates. We use Web 
Ontology Language OWL to infer semantic contexts. 
Ontologies provide richer explicit semantic meanings of 
observed situations. To represent observed situations, we 
build diverse ontologies such as human, space, device, 
etc. Temporal ontology is used to describe temporal 
events and temporal relations between events. 

3. Overview of Semantic Context Maintenance 
Semantic context generator needs an ability to 
hypothetically infer semantic contexts that may be 
retracted later. Semantic context generator requires 
bookkeeping process to maintain the consistency of 
semantic contexts in real time. In ubiquitous 
environments, many events occur and fade away.  

When an event occurs, a context predicate is generated 
and many semantic contexts are inferred. It is necessary 
to retract inferred semantic contexts later if the event 
disappears. Figure 1 shows the overview of architecture 
we propose for semantic context awareness and semantic 
context maintenance. 

The fundamental architectural observation is that the 
semantic context awareness engine can be decomposed 
into two parts: a semantic context generator and a 
semantic context maintenance system. This partitioning 
allows the semantic context generator to focus on 
drawing ontological inferences and the semantic context 
maintenance model to focus on consistency of semantic 



   

contexts. Semantic context maintenance system employs 
an assumption-based truth maintenance system [5] used 
in artificial intelligence. During context generation, the 
semantic context generator and the semantic context 
maintenance system continuously interact in a well-
defined protocol. Every important inference made by the 
semantic context generator is communicated to the 
semantic context maintenance system as a justification. 
Semantic context maintenance system records the 
justifications and resolves the undo problems in context 
generation. 

Ontology axioms define subsumption relations between 
ubiquitous classes. Temporal and spatial axioms are used 
to represent temporal and spatial relations between 
ubiquitous events. Basically, context inference engines 
use backward inferences to answer the requests by 
agents. However, context inference engines triggers 
forward chaining rules to derive contexts useful for 
answer. 

Whenever, context inference engine makes inferences, it 
passes associated axioms and ubiquitous situations to 
context maintenance system. The reasons we employ 
context maintenance system are two folds. First, in 
ubiquitous environments, most objects are mobile. For 
instances, human and ubiquitous objects move in and out 
and again they come in. When they move in, context 
inference engine generates all the relevant contextual 
information by triggering context inference axioms. 
And, if they move out, all the inferred contextual 
information must be removed from the model. However, 
when they move in again, the same things have to be 
repeated. So, we need to keep context dependency 
structure to enhance the performance of context 
inference engines. Second, context information is 
supposed to be shared by ubiquitous agents. Context 
maintenance system maintains observed and inferred 
contexts free of contradiction to be used by many agents. 
If the context maintenance system receives requests from 
an agent which were processed before for another 
agents, the system can provide answer to the agent 
without reasoning from the scratch.  

4. Semantic Context Awareness 

Semantic context represents richer high level contextual 
information from context predicates based on 
ontological reasoning. Figure 2 describes the basic idea 
of semantic contexts. Context predicates are generated 
from ubiquitous sensors. As shown in Figure 2, a context 
predicate, enter(Kim, Room101), is generated. Semantic 
context generator fetches associated ontology instances 
to reason about current situation. In this example, two 
ontology instances, Kim and Room 101, are retrieved for 
generating semantic contexts. We assume that Choi 
already entered the room. 
 

Based on given context predicate and retrieved 
associated ontologism, semantic context generator infers 
semantic contexts. In this example, semantic context 
generator learns from Kim’s ontology that Mr. Kim is a 
doctor, his office is room 101, and his patient is Mr. 
Choi.  Similarly, semantic context generator learns that 
Mr. Choi is in the room 101 and the temperature of room 
101 as well. Initially, ontology instance is a partially 
instantiated background information. And, as ubiquitous 
sensors provide information to the context generator, 
related ontology instances become instantiated. Initially, 
room 101 ontology instance is partially instantiated. 
However, RFID sensors may detect the presence of Mr. 
Choi’s Smart tags and semantic context generator 
instantiate the occupant slots of the room 101 ontology 
instances. 

We assume that semantic contexts are a collection of 
high-level contexts used by ubiquitous agents to provide 
personal services to humans. Ubiquitous agents may use 
different their own reasoning mechanisms, but inform 
semantic context generator of required semantic context 
information. Semantic context generator collects all the 
required vocabularies for servicing ubiquitous agents 
and infers semantic contexts based on context predicates 
and ontologies in real time. Hence, our approach uses 
backward inferences from a set of given semantic 
context vocabularies. Whenever semantic context 

Fig. 1 Overview of Semantic Context Maintenance 

Fig. 2 Semantic Context Awareness 
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generator generates a semantic context, it looks up index 
files to identify relevant ubiquitous agents and triggers 
the agents. This architecture enhances the performance 
of ubiquitous agents and alleviates the redundant 
inferences made by each agent otherwise. 

 As given a context predicate, enter(Kim, Room101), the 
semantic context generator fetches Kim’s and Room 
101’s ontology instances. The semantic context 
generator translates ontology instances into predicate 
forms. This translation occurs when a new ontology 
instance is introduced and existing ontology instance is 
partially instantiated as sensors input new information. 
When sensors provide new information, the semantic 
context generator partially instantiates related ontology 
instances in real time. Our system uses Jena [7] to 
translate OWL instances into predicate forms.  

In the example, the semantic context generator generates 
the following semantic contexts: 

status(Kim, Doctor). status(Choi, Patient). 
office(Kim, Room101). doctor(Choi, Kim). 
patient(Kim, Choi). suffer(Choi, Cancer) 

 
And, ubiquitous agents inform semantic context 
generator of semantic contexts such as 
doctor_in_his_office and patient_in_his_doctor_office. 
For instance, ubiquitous service agents, called doctor 
agents, need to check whether doctor_in_his_office to 
provide comfortable environments for the doctors who 
enter his/her office. And, another agent may fetch patient 
records to be examined by doctors when 
patient_in_his_doctor_office context information is 
detected. The semantic context generator collects such 
semantic context information from ubiquitous agents and 
reason about lower level context information to infer 
higher level context information.  

As described above, the semantic context generator 
fetches Kim’s ontology instance. An ontology instance 
has static and dynamic context data slots. Static context 
data does not change and dynamic context data changes 
in real time. For instance, the status slot of Dr. Kim’s 
ontology instance and the owner slot of Room101’s 
ontology instance are static context data slot. These 
informations play background knowledge in semantic 
context reasoning. And, the ownerin slot and the 
occupant slot of Room101’s ontology instance are 
dynamic context data. The semantic context generator 
fills these dynamic context data slots in real time as 
context predicates are generated based on inputs of 
ubiquitous sensors. The following is an example of 
OWL instance generated by semantic context generator.   

<Doctor rdf:ID="Kim"> 
   <office> 
     <Office rdf:ID="room101"> 
        <ownerin>true</ownerin> 
        <occupant> 
           <Patient rdf:ID="Choi"> 
             <suffer>Cancer</suffer> 
       <status rdf:resource="#Patient"/> 

       <doctor rdf:resource="#Kim"/> 
           </Patient> 
        </occupant> 
        <occupant rdf:resource="#Kim"/> 
        <owner rdf:resource="#Kim"/> 
    </Office> 
  </office> 
<patient rdf:resource="#Choi"/> 
<status rdf:resource="#Doctor"/> 

</Doctor> 

Semantic context generator uses backward chaining rules to 
infer high-level semantic contexts to be used by ubiquitous 
agents. In order to inference engine to reason, semantic context 
generator translates OWL ontology instances into predicates. 
Whenever a new OWL ontology instance is generated or slots 
of existing ontology instances are updated, the translation 
process is activated. Jena is used for the translation [7]. The 
followings are predicate forms generated by Jena (after 
removing OWL namespaces). 

(type Kim Doctor) (office Kim room101) 
(type room101 Office) (ownerin room101 true) 
(occupant room101 Choi)(suffer Choi "Cancer") 
(status Choi Patient) (doctor Choi Kim) 
(occupant room101 Kim) (owner room101 Kim) 
(patient Kim Choi) (status Kim Doctor) 

These predicates are posted on the blackboard in the 
semantic context generator. The semantic context 
generator applies inference rules for generating semantic 
contexts that may be used by ubiquitous agents. For 
instance, the following Prolog rules are used to infer that 
a doctor enters his/her own office and a patient enters 
his/her doctor office. 

doctor_in_his_office(Person, Room) :- 
       type(Person, doctor), 
       office(Person, Room), 
       ownerin(Room, true). 
patient_in_doctor_office(Person, Room) :- 
       type(Person, patient), 
       doctor(Doctor,Person), 
       office(Doctor, Room), 
       occupant(Room, Person). 
 

Similarly, a situation where a doctor is consulting his/her 
patient can be inferred by the following rule. 
 
consultation(Doctor,Patient) :- 
   doctor_in_his_office(Doctor, Room), 
   patient_in_doctor_office(Patient, Room). 

 
Based on backward reasoning, semantic context 
generator generates the following semantic contexts: 

doctor_in_his_office(Kim, Room101). 
patient_in_doctor_office(Choi, Room101). 
consultation (Kim, Choi). 
 
Figure 3 shows dependencies between context predicates 
and semantic contexts in temporal dimension. Each 
context predicate is generated based on inputs of 
ubiquitous sensors. Semantic context generator generates 
semantic contexts based on ontologies and existing 
semantic contexts. Every inferences made by semantic 
context generator to generate semantic contexts is 
communicated to the context maintenance system as a 
justification. The justifications recorded by semantic 



   

context maintenance system allow maintaining the 
integrity of semantic context model dynamically. 

5. Semantic Context Maintenance Model  
Based on context ontology and forward/backward 
inference rules, we generate semantic contexts. Each 
inference step is recorded by context maintenance 
system to maintain the context dependency structure. As 
shown in Figure 3, each semantic context element is 
justified by a set of justifications. For instance, semantic 
context element E1, consultation (Kim, Choi), is the 
consequent and it has two antecedents, element E2, 
doctor_in_his_ office (Kim, Room101), and element E3, 
patient_in_ doctor_office(Choi, Room101). This 
dependency shows that element E1 becomes true when 
both antecedent elements E2 and E3 are true. 

Such structure enables context maintenance system 
avoids “undo”. When a context predicate is popped off, 
it is necessary to remove all the inferred semantic 
contexts that were added when the observed context 
predicate was available. Figure 4 shows the process of 
undo without actual retraction of semantic contexts 
elements. As described above, each semantic context 
element is tagged by label as in ATMS [5]. When a 
semantic context element is no longer believed in, the 
label becomes out. As shown in Figure 4, suppose 
patient Mr. Choi leaves Room 101.  The semantic 
context generator infers not enter(Choi, Room101) and 
makes the element, enter(Choi, Room101), out. By 

propagating the out, the semantic context generator 
infers that no longer consultation(Kim, Choi) is true in 
current contexts. 

6. Representing Semantic Context Dependencies 
In order to maintain dependencies between semantic 
context predicates, ATMS(Assumption-based Truth 
Maintenance System) [5,8] has been used. Figure 5 
shows ATMS justification network built by the semantic 
context maintenance system for the above example. 
 

In Figure 5, meanings of ATMS assumption nodes are as 
follows: 
 
p:type(kim,doctor)    q:ownerin(room101,true) 
r:office(kim,room101) w:type(choi,patient) 
x:doctor(kim,choi) y:occupant(room101,choi) 
s:doctor_in_his_office(kim, room101) 
t:patient_in_doctor_office(choi, room101) 
g:consultation(ki, choi)    
 
The semantic context generator and the semantic context 
maintenance system continuously interact in a well-
defined protocol. Every important inference made by the 
semantic context generator is communicated to the 
semantic context maintenance system as a justification. 
When semantic context generator fires rules in Section 
4, it informs semantic context maintenance system of its 
rule executions with the following protocols. 
 
declare_assumption(office(kim, room101)), 
declare_assumption(type(kim, doctor)), 
declare_assumption(ownerin(room101, true)), 
atms_add_just((ownerin(room101, true),  

office(kim, room101), 
type(kim, doctor)), 

 doctor_in_his_office(kim, room101)), 
declare_assumption(type(choi, patient)), 
declare_assumption(doctor(kim, choi)), 
declare_assumption(office(kim, room101)), 
declare_assumption(occupant(room101, choi)), 
atms_add_just((type(choi, patient),  

doctor(kim, choi),  
office(kim, room101),  
occupant(room101,choi)), 

      patient_in_doctor_office(choi, room101)), 
atms_add_just((doctor_in_his_office(kim, 

room101), 
patient_in_doctor_office(choi,            

room101)), 
consultation(kim, choi)). 
  

Fig. 3 Generation of Semantic Contexts 

Fig. 4 Retraction of Semantic Contexts Elements 

Fig. 5 ATMS Justification Network 
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Semantic context maintenance model builds justification 
structures and beliefs as follows: 
 
holds(office(kim,room101),bitvec(1)). 
holds(type(kim,doctor),bitvec(2)). 
holds(ownerin(room101,true),bitvec(4)). 
holds(doctor_in_his_office(kim,room101), 

bitvec(7)). 
holds(type(choi,patient),bitvec(8)). 
holds(doctor(kim,choi),bitvec(16)). 
holds(occupant(room101,choi),bitvec(32)). 
holds(patient_in_doctor_office(choi,room101), 
       bitvec(57)). 
holds(consultation(kim,choi),bitvec(61)). 

 
The notation, holds(Node,Env), means Node holds in the 
environment Env. Node is a node in the justification 
network and a context datum. Env is a set of 
assumptions.   Bitvec(7) is another notation of 
bitvec(111), therefore bitvec(7) means logical OR of 
bitvec(1), bitvec(2), and bitvec(4). This means that the 
node doctor_in_his_office(kim,room101) whose Env is 
bitvec(7) depends on three antecedent nodes office(kim, 
room101), type(kim,doctor), ownerin(room101,true) 
whose Envs are bitvec(1), bitvec(2), and bitvec(4), 
respectively. As shown above, three semantic context 
predicates, doctor_in_his_office(kim,room101), doctor_ 
in_his_office(kim,room101), and consultation(kim, 
choi), are believed in the model. 
 
 As described in Figure 4, suppose a patient Mr. Choi 
leaves Room 101. This means that Mr. Choi is no more 
an occupant of Room 101. In order to show this dynamic 
situation, semantic context generator retracts the 
associated assumption retract_assumption(occupant 
(room101, choi)). Then semantic context maintenance 
system identifies all the related Nodes by checking 
bitvec database using indexed approach. The following 
execution segments show that Mr. Choi is no more an 
occupant of Room 101 and inferred facts from it are 
retracted as well.  
 
retracting assumption ----> 

occupant(room101,choi) 
retracting related node --->  

patient_in_doctor_office(choi,room101) 
    consultation(kim,choi) 
 
Semantic context maintenance model holds belief 
as follows without actual deleting the 
retracted three nodes as follows. 
 
holds(office(kim,room101),bitvec(1)). 
holds(type(kim,doctor),bitvec(2)). 
holds(ownerin(room101,true),bitvec(4)). 
holds(doctor_in_his_office(kim,room101), 

bitvec(7)). 
holds(type(choi,patient),bitvec(8)). 
holds(doctor(kim,choi),bitvec(16)). 
 
Later, if Mr. Choi is back to Room101, then semantic 
context maintenance model infers those semantic context 
predicates,occupant(room101,choi),  patient_in_doctor 
_office(choi,room101), and  consultation(kim,choi) 
without building justification from the scratch.  
 

The context maintenance system is used in ubiquitous 
systems in conjunction with ubiquitous agents. 
Ubiquitous agents need contextual information and 
request information to semantic context generator in 
order to perform their own tasks. The context 
maintenance system records inferences to provide 
information to the semantic context generator. 

8. Conclusion 
We propose semantic contexts to represent high-level 
contexts using ontologies and the semantic context 
maintenance system to provide automatic methods for 
maintaining coherence of context databases. Semantic 
context generator infers high-level semantic contexts 
from a context predicate that represent a ubiquitous 
event from diverse sensors. In order to improve 
performance of semantic context generator, we suggest 
the semantic context maintenance system using an 
assumption-based truth maintenance system.  Semantic 
context maintenance system records justifications of 
semantic contexts and adds semantic contexts to the 
context model only when they are justified and 
automatically remove inferred semantic contexts if their 
justifications go away. Based on our context 
maintenance system, ubiquitous applications can reason 
about semantic context models free of contradictions. 
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