

 1

Adaptive Sketchy Shape Recognition
Based on Incremental Learning

Zhengxing Sun, Shuang Liang, Lisha Zhang

State Key Lab for Novel Software Technology, Nanjing University, Nanjing, 210093, PR China
szx@nju.edu.cn

Abstract
Adaptive sketchy shape recognition is a critical
problem in sketch-based user interface. In this paper, an
SVM-based incremental learning algorithm is made to
solve this problem. Our algorithm utilizes only the
support vectors instead of all the historical samples, and
selects some important samples from all newly added
samples as training data. The importance of a sample is
measured according to its distance to the hyper-plane of
the SVM classifier. Experimentations and evaluations
of our algorithm are presented and show the
effectiveness of this algorithm in reducing both the
training time and the required storage space for the
training dataset to a large extent with very little loss of
precision.

Keywords: Sketch-based User Interface, Adaptive
Sketch Recognition, Incremental Learning.

1. Introduction
In sketch-based user interaction, the goal is to allow
users to naturally express their ideas with freeform
drawing. However, sketching is usually informal,
inconsistent and ambiguous. Freehand-drawing for the
same shape may be quite different from user to user and
even from time to time by the same user. A system that
is customized for a particular user even may not work
for another different user. Hence, it is not surprising
that the poor efficiency of recognition engines, even in
the latest experiments[1][2], is always frustrating,
especially for the newly added users and composite
shapes, though numerous researches have been working
on this subject for many years and have produced a
wide variety of techniques.

In our previous researches, two kernel methods have
been developed for our online sketch recognition
system to support users’ creativities, named Magic-
Sketch[1][3]. The rule-based sketchy shape recognition[3]
can fits and rectifies gradually the shapes to a regular
one based on users’ feedback of partial and overall
structural similarity of shapes. It can adjust the
parameters and thresholds for the systems such that
they can yield acceptable results for new users. The
SRG (Spatial Relation Graph)-based composite shape
recognition approach[4] can be suitable for the shapes
with different complexities in our experiments.
However, as the graph isomorphism is originally an
NP-complete problem, matching time of SRG is very
high for real-time interaction in some cases. In fact,

making machines learn to understand users’ drawn
sketches requires sophisticated and highly adapted
algorithms of sketch recognition. Benefiting from
advances in sketchy shape recognition system could not
be expected before the problem of user adaptation is
well solved. Therefore, more complex, statistical
approaches such as Neural Network and Support Vector
Machine are required.

Human cognition is usually performed incrementally
and iteratively and to adapt to a particular user’s
interaction styles means to re-train the
recognizer/classifier with training samples obtained for
this user. Since the newly introduced sample set is
usually much smaller than the previously accumulated
one, retraining with all these samples is time-
consuming and not economical. In this case,
incremental learning is preferable. It mainly involves
the newly obtained samples in retraining and makes the
recognizer learn fast by avoiding full usage of previous
samples. The Support Vector Machine (SVM)[5] is a
new but promising technique to these pattern
recognition problems. Although SVM has many
excellent aspects, which are suitable for incremental
learning, unfortunately, classical SVM learning
algorithm does not support incremental learning. In
order to adapt to new samples, the traditional SVM has
to discard all the previous training results and re-train
the new classifier on the whole data set. Hence, this
method is not economic in time and space. Syed et al[6]
and Xiao et al[7] proposed different incremental learning
models based on SVM, but both of them have
shortcomings in performance.

In this paper, we present an SVM-based incremental
learning algorithm and applied it to the problem of
adaptive sketchy shape recognition. By extending two
available algorithms (Syed et al[6] and Xiao et al[7]), we
develop a new incremental learning algorithm. It uses
the support vectors instead of all historical samples and
selects some important samples from the incremental
samples as the training data in the incremental training
steps. As a result, both the training time and the
required storage space are saved. This algorithm forms
the basis of the multi-class classifier implemented in
our on-line sketchy graphics recognition system[3][8][9].
Our experimental results show effectiveness and
efficiency of this algorithm.

2. Modified Incremental Learning based on
SVM Algorithm
Support Vector Machines (SVMs) have been proved

 2

efficient and suitable for learning with large and high
dimension data sets. Furthermore, investigations[6][7]
have shown that the incrementally trained SVMs are
better than their non-incrementally trained equivalents.
This rests mainly with the fact that the generalization
property of an SVM does not depend on all the training
data but only a subset, which is referred to as Support
Vectors (SVs). In other words, the number of SVs
typically is very small compared with the number of all
training samples. In fact, the SVs are those that lie the
closest to the hyper-plane[7]. Nevertheless, there is a
problem of how to distinguish them from the rest in the
sample sets before training. A solution is to minimize
the collected data sets (SCL) by making use of the
historic result of training, so that the samples are close
enough to the hyper-plane as SV sets (SSV). That is,
Min(SCL| SSV⊂SCL). Additionally, the training process of
SVMs itself may be very time consuming, especially
when dealing with noisy data, and the samples used in
incrementally training of SVM-classifier must be
labeled artificially. This is tedious and burdensome,
even an interruption of the user’s thinking process.

Syed et al[6] proposed an incremental learning model
based on SVM, which is to preserve only the support
vectors (SV) at each incremental step and add them to
the training set for the next step. However, this
algorithm cannot maintain a stable performance in a
general sense. Xiao et al[7] proposed a new SVM
incremental learning method based on the boosting
idea. Their approach employs an iterative classification-
training process to retrain the classifier. The superiority
of this algorithm is that its ultimate close-test precision
is guaranteed before the process stops. However, there
is no theoretical analysis that guarantees this algorithm
can terminate and may be a vibration of samples
between the correctly classified sample set and mis-
classified sample set.

We utilize the respective advantages of these two
algorithms mentioned above and propose our algorithm.
The iteration mechanism of Syed et al’s algorithm is
introduced to utilize historical training samples, where
the SVs of the historical samples are used to replace all
historical samples in the re-training process. In the
iteration, the previously trained classifiers evaluate all
newly collected samples (denoted as INS) and select the
most important instances (denoted as NS,) by
evaluating all newly added samples using the process
Evaluate(). Re-training is performed on the chosen
samples and the historical SVs. Although Xiao et al’s
algorithm makes the best use of the previously trained
classifiers and selects some important samples from
those newly added samples in the re-training process, it
fails to notice that the important samples are those that
are close to the hyper-plane. In addition, their algorithm
is instable. These limitations do not exist in our
algorithm.

Accordingly, we propose an SVM-based incremental
learning algorithm, which inserts a questioning process
in the training process of SVM incremental learning.

The training would only preserve the SVs at each
incremental step and then add them instead of all
historic data to the training sets collected in the
questioning step. In other words, SVM classifier
analyzes users’ incremental unlabeled samples and
picks out the most important instances for the user to
endorse as training samples. Denoting the training
process of SVM as Train(SV), the process of evaluating
all newly added samples as Evaluate(), the initial
training samples as IS, the incremental training samples
as INS, the temporary training samples as NS and
working data as WS, the process of SVM incremental
active learning can be briefly described as:

(1). Γ=Train(IS), WS=ISSV. The random training
samples are collected and their correct classes are
specified until they are sufficient for training the
classifier initially. A sub-classifier for every two classes
is built if it does not exist, and is then trained or
retrained with the historical SVs and newly added
training samples to learn users’ preferences of
sketching strokes.

(2). Γ=Train(WS), WS=WSSV. The features of the
samples (In sketch recognition, the features are the
input strokes described by the modified turning
function[10], which will be introduced in 3.2), and are
classified with every sub-classifier. The outputs are the
classes with the most votes from every sub-classifier.
The newly added samples are selected if they are close
to the hyper-plane.

(3) .NS=Evaluate(INS), WS=WS∪NS. The newly
added samples are evaluated. The evaluation is stored
and gathered as the incremental training samples.

(4). Repeat (2) and (3) until the results of SVM
classifiers are satisfactory or enough training samples
are obtained.

The key in our algorithm is how to select those
important samples in the Evaluate() process. People
usually consider mis-classified samples are the most
valuable to SVM classifiers because they think the
recognition precision of SVM classifiers can be greatly
improved if the classifiers can recognize these mis-
classified samples. For example, Xiao et al’s
algorithm[7] uses the mis-classified samples in every
learning step. In fact, some mis-classified samples may
be important if they are close to the classification
hyper-plane but others are usually useless for retraining
the SVM classifiers. This is because SVM only selects
those nodes that are close to the classification hyper-
plane as Support Vectors. Therefore, important samples
are not those mis-classified samples that are far away
from the hyper-plane. Moreover, it is not easy to collect
these mis-classified samples because if so, the user has
to confirm the correct class of every sample. This is not
a feasible user scenario. Those new samples that can be
correctly recognized and are also close to the hyper-
plane are actually important because those samples
record the characteristics of the incremental dataset.

 3

Hence, in our incremental learning algorithm, we only
select those samples that are close to the classification
hyper-plane, as well as the previous SVs, for re-
training.

In our evaluating process, the interrogative samples are
determined by estimating their distance from the hyper-
plane. Given a training set of n samples:

)},(,),,{(11 nn yxyxF L= , }1,1{ −+∈iy ,

the original data space can be mapped to a higher
dimensional feature space ƒ via a Mercer Kernel
operator[11]: Φ(y)Φ(x)y)K(x, ⋅= , where fF: →Φ , so
as to make these samples linearly separable in the
higher dimension feature space. We build the hyper-
plane that separates the training data by maximization
of the margin in the higher dimension feature space ƒ
and the hyper-plane can then be expressed as:

() 0, =+∑
∈

bxxKy i
SVx

ii
i

α , Ci ≤<α0 (1)

That is, ,0)(0 =+Φ bxw

where, ∑
∈

Φ=
SVx

iii
i

xyw)(0 α ,

Coefficients αi can be obtained from solving the
following optimization problem:

() ()∑ ∑
= =

Φ⋅Φ−=
l

i

l

ji
jijijii xxyyw

1 1,2
1)(

 :Minimize

αααα
, (2)

subject to constraints:

∑
=

=
l

i
ii y

1
0α , 0≥iα , li ,...,2,1= . (3)

The distance between the sample x and the hyper-plane
can be defined as:

0

0)(
),(

w
bxw

wxd
+Φ

= (4)

Since 10 =w ,

|),(|)(),(0 ∑
∈

+=+Φ⋅=
SVx

iii
i

bxxKybxwwxd α (5)

Intuitively, there is a conflict between the precision and
the speed if we use a constant distance threshold to
choose the important samples. Hence, we consider
using a dynamic threshold in our proposed algorithm.
In the beginning steps of incremental learning, due to
the small size of the training dataset, the time to re-train
SVM classifiers is relatively short and the recognition
precision of SVM classifiers is also relatively low. In
this case, we can use a larger threshold value in the
evaluation process such that the precision can be a little

bit higher while the time is still acceptable. As the
number of training data increases in later incremental
learning steps, the cost (in both time and space) of
training and the recognition precision will also increase.
In this case, the evaluation process should judge the
importance of every newly added sample more
carefully with a smaller threshold in order to avoid
substantial increase of the number samples necessary
for re-training of the SVM classifiers. In another aspect,
if we want to adapt to a new user, we can use a large
threshold value to adapt him quickly. Using this
dynamic threshold method, we can obtain higher
precision with shorter training time.

The computing complexity of the evaluation process is:

)(svISINSO ×

The complexity of the evaluation process is much less
than the training complexity. So, the computational
complexity of the training process in our proposed
incremental learning is:

)(2
svsv ISNSISO ×∪

Because our incremental learning method only retrains
the classifier with the SV set and those important
samples and INSNS << , our proposed incremental
learning is faster compared with both the repetitive
learning method and the method proposed by Syed et
al[6]. It is also faster than the method proposed by Xiao
et al[7].

In the previous discussion we only focus on binary-
classification problem. But real application problems
are usually multi-classed. Over the past few years, a lot
of progress has been made to construct multi-class
classifiers based on the SVM theory. Besides the two
classical structures, i.e., one-against-all and one-
against-one, Platt et al[12] adopt the Decision Directed
Acyclic Graph (DDAG) to combine many binary (two-
class) classifiers into a multi-class classifier. Basically,
the algorithm is based on binary classifiers and it is
similar to the one-against-one structure. Dietterich et
al[13] and Allwein et al[14] also construct multi-class
classifier by combining the outputs of several binary
ones. Typically, the combination is done via a simple
nearest-neighbor rule, which finds the class that is the
closest in some sense to the outputs of the binary
classifiers[15]. Weston et al[11] have proposed an
extension to solve multi-class classification problems in
one step. But they cannot get a better result than the
two classical structures in experiments. The one-
against-all structure is the most commonly used multi-
class classification utilities. However, the one-against-
one structure shows better efficiency than the one-
against-all structure in incremental learning, especially
for a large set of samples with a small number of
classes. In this paper, we will use two classical
structures (one-against-all and one-against-one) to build
multi-class classifiers for our application-sketch

 4

recognition.

Define the training sets as consisting of m classes and n
samples. For one-against-all structure, m sub-classifiers
are needed, with n samples for each classifier. For one-
against-one structure, m(m-1)/2 sub-classifiers are
needed. Based on the max-win scheme[14], for the
sample to be classified, each sub-classifier casts one
vote for its preferred class. The final result is the class
with the most votes. Compared with traditional one-
against-all structure, one-against-one has the following
advantages: firstly, although intuitively simple, one-
against-one structure actually controls the Vapnik-
Chervonenkis (VC)[5] dimensions on the whole training
set, while the decision planes in one-against-all
structure are always too complicated to avoid over-
fitting. Secondly, in the one-against-all structure each
classifier has to be trained using all the n samples. It is
very time-consuming compared with the one-against-
one structure. Finally, compared with one-against-all
structure, one-against-one structure is more suitable for
incremental learning. That is, if a new sample is added,
for one-against-all structure we need to train each of the
m classifier with n+1 samples; but for one-against-one
structure we only need to train m-1 classifier each with
2(n+1)/m samples averagely. Hence we draw a
conclusion that one-against-one structure is more
suitable than one-against-all structure for incremental
learning.

3. Experiments for Sketchy Shape Recognition
In order to validate our proposed approach, we applied
all the algorithms in a real application[3] We construct
classifiers based on repetitive learning and the three
SVM-based incremental learning algorithms for
classifying the sketchy shapes drawn by users and
compare their performance.

We use turning function[10] to extract stroke features.
Turning function is a function of arc s on a polygon A,
as shown in Figure 1. It represents the cumulative
turning angle from a start point on the boundary of A to
the current point. In order to make sure the sketches are
independent of size and location, we need to normalize
the sketches before feature extraction. Meanwhile, we
add some restrictions to turning function to simplify the
problem and thus modify the turning function as

di
d

i
d

diV AAi ≤≤
−

Θ−Θ= 0),1(')mod('

1
s

)(sAΘ

v+2π

v

O

v

A

(a) Polygon (b) turning function
Figure 1 Turning Function

But it is mainly used to extract single-stroke features.
For multi-stroke sketches, we introduce the virtual

strokes to link the end of one stroke with the start of the
next one orderly and continuously, as shown in Figure
2. In this way, we can transform a multi-stroke sketch
to a single-stroke one. Then we can use turning
function mentioned above to extract the stroke features.

Figure 2 Turning Function

Four algorithms are compared in the experiment: the
repetitive learning algorithm, Syed et al.’s and Xiao et
al.’s incremental learning algorithm, and our proposed
incremental learning algorithm. We collected two
datasets, a 5-class dataset and a 14-class dataset[16][17].
The 5-class dataset is used to validate user adaptation of
our proposed algorithm. The 14-class dataset together
with the 5-class dataset are used to evaluate and
compare the performance of the four algorithms. In
addition, the 14-class dataset is used to compare the
performance of the four algorithms with two different
multi-class structures: one-against-one and one-against-
all.

In order to collect the 5-class dataset, we asked a user
to draw each shape (triangle, quadrangle, pentagon,
hexagon, and ellipse) repeatedly with two different
styles: one using the mouse and the other using the
pen/tablet. In total, we have collected 1367 sample
shapes drawn with pen/tablet and 325 samplers drawn
with mouse. We use the turning function[8] as the
feature vector of the polygon representation of the
sketchy shape. In this paper, we use a 20-dimension
feature vector and after transformation we can have 40
samples for each sample. Therefore we have 54680
samples for the pen/tablet style and 13000 samples for
the mouse style in total. We randomly select 20210
samples of the pen/tablet to form a test set, TS1, and use
12000 samples of the mouse style to form another test
set, TS2. Then, we randomly select samples from the
remained samples of the pen/tablet style to form 39
incremental training sample sets (denoted as: IS1, IS2…
IS39). The first 6 incremental training sets have 100,
100, 120, 150, 300, 700 samples, respectively, and each
of the rest 33 sets has 1000 samples. The remained
samples of the mouse style form a training set with
1000 samples (denoted as IS40) and we add this dataset
into the incremental learning process as the last training
set. Specially, for Xiao et al.’s algorithm, we use
IS1+IS2+IS3 as the first training set because it cannot
work well (cannot terminate) if the training set is too
small.

For the 14-class dataset, we collected 52802 samples of
14 classes of commonly used strokes. The sketchy
shapes and their regular shapes for the 14 classes of
strokes are shown in Figure 3. Each sample is

 5

represented using a 20-dimentional features vector
based on the turning function. We randomly select
21932 samples to constitute the test set (TS3) and then
randomly select samples from the remaining samples to
form 24 incremental training sample sets (denoted as
S1, S2… S24). The first 5 incremental training sets have
300, 300, 370, 500, and 900 samples, separately, and
each of the rest 19 sets has 1500 samples, respectively.
Specially, for Xiao et al.’s algorithm, we use S1+S2+S3
and S4+S5 as the first two training sets because it cannot
work well for small training sets.

(a) Sketchy strokes (b) Standard strokes
14131211 10 9 8

765 4 3 2 1

Figure 3 Strokes of 14 classes frequently used in sketching

In all our experiments, a RBF (Radial Basic Function[5])
kernel is used and the implementation of the training
process Train() is the same as in SVMTorch[18]. The
parameter we used is δ= 2 , which can yield best
performance after many tests. In all comparison, the
discarding rate of Xiao et al.’s algorithm is 0.5. All
experiments are done on an Intel Celeron PC (with a
2.4G Hz CPU and 256MB memory) running on
Microsoft Windows XP Professional.

4. Performance Evaluation
We have done some experiments to evaluate and
compare the performance of the four algorithms with
both the 5-class dataset and the 14-class dataset. In the
experiment on the 14-class dataset, we also compare the
performance of one-against-one and one-against-all
multi-class structures, with all four incremental learning
algorithms.

Figure 4 shows the performance comparison among the
four algorithms using the same one-against-one
classifier structure on the 5-class dataset. For each
algorithm, we use the same 40 incremental training
sample sets to train them incrementally and record the
incremental training time in Figure 4(c). After each
incremental training step, we test it using the two test
sets, TS1 and TS2, respectively, and record their
classification precisions. Figure 4(a) and (b) show the
curves of the precisions. Figure 5 shows the
performance comparison among the four algorithms
using two different classifier structures on the 14-class
dataset. For each structure, we use the same 24
incremental training sample sets to train them
incrementally and record the incremental training time
in Figure 5(b) and (d). We also test their classification
precisions on the test set (TS3) and show them in Figure
5(a) and (c).

Theoretically, incremental learning is much faster than
repetitive learning. Figure 4(c) and Figure 5(b)(d) have
proved this point. Repetitive learning is much more

time-consuming than the other three incremental
learning algorithms, and its training time increases
sharply as the scale of the training set increases. The
training time of Xiao et al.’s algorithm is always
fluctuant and Syed et al.’s algorithm shows a better
effect in the training time. Compared with the other
methods, our proposed incremental learning algorithm
is the fastest, as shown in Figure 4(c) and Figure
5(b)(d). From these figures, we can see that the
recognition precisions of all four algorithms are nearly
close. The loss in precision of our incremental learning
algorithm is very small. From Figure 4, we can see that
the loss is only 0.75% (on TS1) and 0.37% (on TS2)
compared with the repetitive learning algorithm, 0.4%
(on TS1) and 0.15% (on TS2) compared with Syed et
al.’s algorithm. Our algorithm outperforms Xiao et al.’s
algorithm in most cases.

We also did some experiments to compare the two
structures of multi-class classifiers using all the four
SVM-based learning algorithms. From the experiments,
as shown in Figure 6, we can see the one-against-one
structure classifiers outperform the one-against-all
structure classifiers in both training time and
classification precision. This is why we finally adopt
the one-against-one structure in our system.

In our on-line graphics recognition system, we have
realized a multi-class SVM classifier based on the one-
against-one structure. Each sub-classifier is based on
our proposed incremental learning algorithm. Although
the initial precision (95.53%) is very high in a general
sense, it still may not be suitable for a specific user’s
drawing style. Users can correct these recognition
errors through the UI of our system[3] immediately and
the system will keep all these samples. After several
samples are corrected, users can command the system
to do incremental learning on these newly obtained
samples. After training for less than 30 seconds, the
new classifier is adaptive to the user’s drawing style.
Now, the system can correctly recognize them without
making any previous mistakes.

5. Conclusion
Adaptation is a critical problem in user-specific
freehand sketch recognition systems. SVM-based
incremental learning is a good solution to this problem.
Compared with repetitive learning, incremental
learning can save much time in re-training with little or
no loss of recognition precision. By utilizing the
respective advantages of the two existing SVM-based
incremental learning algorithms[6][7], we proposed a
SVM-based incremental learning algorithm. Our
proposed incremental learning algorithm can reduce
both the training time and the required storage space for
the training dataset to a large extent with very little loss
of precision. Experiment results have shown that this
algorithm is effective for user adaptation in on-line
sketch recognition systems.

 Nevertheless, the computational model of SVM

 6

classifier must be parameterized. This means that it can
only deal with single strokes. So, we made a
supposition that all composite shapes are composed of
some continuous strokes, and introduce the virtual
strokes to link these continuous strokes orderly and
translate the multi-strokes of composite shapes into a
single stroke. The main problem of this method is that
the strokes are not the basic constitutive geometric
primitives of a shape for human cognition and the shape
representation based on a single stroke composed of
physical stokes and virtual strokes is not structural and
unique for user. In fact, the underlying factors that
determine the true identity of freehand sketches remain
to be intractable and it is probably safe to say that no
simple scheme is likely to achieve high recognition and
reliability rates not to mention human performance. So,
we must do online sketchy shape recognition based on a
dynamic user modeling, which would model user’s
physical drawing contexts incrementally and user’s
subjective evaluations of the recognized objects
accumulatively. The goal is to cope with the variations
and ambiguities inherent in sketchy drawings so as to
interpret the visual scene as the way the user intended.
These are our ongoing research direction.

Acknowledgement
The work described in this paper was supported by a
grant from National Natural Science Foundation of
China (69903006, 60373065 and 60473113).

References
[1] Levent Burak Kara, Thomas F, Stahovich, Sim-U-

Sketch: A Sketch-Based Interface for Simulink,
Proceedings of AVI-2004: 354-357.

[2] Newman M W, James L, Hong J I, et al, DENIM: An
informal web site design tool inspired by observations
of practice, HCI, 2003(18): 259-324.

[3] Sun Z X, Xu X G, Sun J Y et al, Sketch-based Graphic
Input Tool for Conceptual Design, J. of Computer-
Aided Design & Computer Graphics (In Chinese),
2003,15(9):205~206.

[4] Xu X G, Sun Z X, Peng B B, et al, An online composite
graphics recognition approach based on matching of
spatial relation graphs, International Journal of
Document Analysis and Recognition, 2004,7(1): 45-55.

[5] Vapnik V, The Nature of Statistical Learning Theory,
Springer-Verlag, 1995.

[6] Syed N, Liu H and Sung K K, Incremental Learning
with Support Vector Machines, Proc. of IJCAI-99,
1999.

[7] Xiao R, Wang J C, Sun Z X et al, An Incremental SVM
Learning Algorithm α−ISVM, Journal of Software (In
Chinese), 2001, 12(12): 1818-1824.

[8] Sun Z X, Peng B B, Cong L L, et al, Study on user
adaptation for online sketchy graphic recognition, J. of
Computer-Aided Design & Computer Graphics (In
Chinese), 2004,16(9): 1207-1215.

[9] Sun Z X, Liu W Y, Peng B B, et al, User Adaptation for
Online Sketchy Shape Recognition，in: J. Lladós, Y.B.
Kwon (eds), Graphics Recognition: Recent Advances
and Perspectives (Revised Papers from 5th International
Workshop, GREC 2003, Barcelona, Catalonia, Spain
2003), Lecture Notes in Computer Science, 2004, Vol
3088: 303-314。

[10] Esther, M. A., An Efficient Computable Metric for
Comparing Polygonal Shapes, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 1991， 13(3)：
209~216。

[11] Weston J and Watkins C, Multi-class Support Vector
Machines, Technical Report CSD-TR-98-04,
Department of Computer Science, University of
London, 1998.

[12] Platt J, Cristianini N and Taylor S, Large Margin DAGS
for Multiclass Classification, Advances in Neural
Information Processing Systems 12, eds. Solla S A,
Leen T K, and Muller K R, MIT Press, 2000.

[13] Dietterich T and Bakiri G, Solving Multi-class Learning
Problems via Error-Correcting Output Codes, Journal of
Artificial Intelligence Research, 1995,2: 263-286.

[14] Allwein E, Schapire R and Singer Y, Reducing
Multiclass to Binary: A Unifying Approach for Margin
Classifiers, Journal of Machine Learning Research,
2000(1, 2): 113-141.

[15] Klautau A, Jevtić N and Orilitsky A, On Nearest-
Neighbor Error-Correcting Output Codes with
Application to All-Pairs Multiclass Support Vector
Machines, Journal of Machine Learning Research,
2003(4): 1-15.

[16] Peng B B, User Adaptation for On-Line Sketchy Shape
Recognition, Ms Degree Thesis ((In Chinese)), Nanjing
University,2003.

[17] Sun J Y, User Adaptation for On-Line Sketchy Shape
Recognition, Ms Degree Thesis ((In Chinese)), Nanjing
University,2004.

[18] Collobert R and Bengio S, SVMtorch: Support Vector
Machines for Large-Scale Regression Problems, Journal
of Machine Learning Research, 2001:143-160.

 7

10 20 30 40
70

75

80

85

90

95

100

C
lo

se
d-

te
st

 P
re

ci
si

on
 o

f s
ha

pe
 c

la
ss

ifi
ca

tio
n

in
 o

ne
-a

ga
in

st
-o

ne
 st

rc
tu

re
 (%

)

Incremental Learning Step (Times)

 the repetitive learning algorithm
 Syed et al.'s incremental learning algorithm
 Xiao et al.'s incremental learning algorithm
 Our proposed incremental learning algorithm

10 20 30 40

75

80

85

90

95

100

O
pe

n-
te

st
 P

re
ci

si
on

 o
f s

ha
pe

 c
la

ss
ifi

ca
tio

n
 in

 o
ne

-a
ga

in
st

-o
ne

 st
ru

ct
ur

e
(%

)
Incremental Learning Step (Times)

 the repetitive learning algorithm
 Syed et al.'s incremental learning algorithm
 Xiao et al.'s incremental learning algorithm
 Our proposed incremental learning algorithm

5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

Tr
ai

ni
ng

 T
im

e
in

 O
ne

-a
ga

in
st

-O
ne

 S
tru

ct
re

 (s
)

Incremental Learning Step (Times)

 the repetitive algorithm
 Syed et al.'s algorithm
 Xiao et al.'s algorithm
 Our proposed algorithm

(a) Precision comparison (on TS1) (b) Precision comparison (on TS2) (c) Training time comparison

Figure 4. Performance evaluation among the four algorithms using one-against-one classifier structure on the 5-class dataset (δ= 2 for the
kernel functions of all four algorithms, and the discarding rate of Xiao et al.’s algorithm is 0.5).

5 10 15 20 25

80

85

90

95

100

P
re

ci
si

on
 o

f S
tro

ke
 R

ec
og

ni
tio

n
in

 o
ne

-a
ga

in
st

-o
ne

 s
tru

ct
ur

e
(%

)

Increm ental Learning Steps (Times)

 Repetitive learning algorithm
 Syed et al.'s incremental learning algorithm
 Xiao et al.'s increm ental learning algorithm
 Our proposed incremental learning algorithm

5 10 15 20 25
0

20

40

60

80

100

120

140

160

Tr
ai

ni
ng

 T
im

e
in

 o
ne

-a
ga

in
st

-o
ne

 s
tru

ct
re

 (s
)

Increm ental Learning Steps (T im es)

 Repetive learning algorithm
 Syed et a l.'s a lgorithm
 X iao et al.'s a lgorithm
 O ur proposed algorithm

(a) Precision comparison using 1-1 structure (b) Training time comparison using 1-1 structure

5 10 15 20 25
65

70

75

80

85

90

95

100

P
re

ci
si

on
 o

f S
tro

ke
 R

ec
og

ni
tio

n
in

 o
ne

-a
ga

in
st

-a
ll

st
ru

ct
ur

e
(%

)

 Repetitive learning algorithm
 Syed et al.'s incremental learning algorithm
 Xiao et al.'s incremental learning algorithm
 Our proposed incremental learning algorithm

Incremental Learning Steps (Times)

5 10 15 20 25
0

100

200

300

400

500

600

700

Tr
ai

ni
ng

 T
im

e
in

 o
ne

-a
ga

in
st

-a
ll

st
ru

ct
ur

e
(s

)

Incremental Learning Steps (Tim es)

 Repetive learning algorithm
 Syed et al.'s algorithm
 X iao et al.'s algorithm
 Our proposed algorithm

(c) Precision comparison using 1-m structure (d) Training time comparison using 1-m structure

Figure 5. Performance evaluation among the four algorithms using different multi-class classifier structures on the 14-class dataset

 8

5 10 15 20 25
65

70

75

80

85

90

95

100
P

re
ci

si
on

 o
f S

tro
ke

 R
ec

og
ni

tio
n

in
 th

e
re

pe
tit

iv
e

le
ar

ni
ng

 a
lg

or
ith

m
 (%

)

Incremental Learning Steps (Times)

 One-against-one structure
 One-against-all structure

5 10 15 20 25
0

100

200

300

400

500

600

700

Tr
ai

ni
ng

 T
im

e
in

 th
e

re
pe

tit
iv

e
le

ar
ni

ng
 a

lg
or

ith
m

 (s
)

Incremental Learning Steps (Times)

 One-against-one structure
 One-against-all structure

(a) Precision comparison using the repetitive learning algorithm (b) Training time comparison using the repetitive learning algorithm

5 10 15 20 25
65

70

75

80

85

90

95

P
re

ci
si

on
 o

f S
tro

ke
 R

ec
og

ni
tio

n
in

 X
ia

o
et

 a
l.'

s
in

cr
em

en
ta

l l
ea

rn
in

g
al

go
rit

hm
 (%

)

Incremental Learning Steps (Times)

 One-against-one structure
 One-against-all structure

5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

220

240

Tr
ai

ni
ng

 T
im

e
in

 X
ia

o
et

 a
l.'

s
in

cr
em

en
ta

l l
ea

rn
in

g
al

go
rit

hm
 (s

)

Increm ental Learning Steps (T im es)

 One-against-one structure
 One-against-all structure

(c) Precision comparison using Xiao et al’s algorithm (d) Training time comparison using Xiao et al’s algorithm

5 10 15 20 25
65

70

75

80

85

90

95

100

P
re

ci
si

on
 o

f S
tro

ke
 R

ec
og

ni
tio

n
in

 S
ye

d
et

 a
l.'

s
in

cr
em

en
ta

l l
ea

rn
in

g
al

go
rit

hm
 (%

)

Incremental Learning Steps (Times)

 One-against-one structure
 One-against-all structure

5 10 15 20 25

0

20

40

60

80

100

Tr
ai

ni
ng

 T
im

e
in

 S
ye

d
et

 a
l.'

s
in

cr
em

en
ta

l l
ea

rn
in

g
al

go
rit

hm
 (s

)

Incremental Learning Steps (Times)

 One-against-one structure
 One-against-all structure

(e) Precision comparison using Syed et al’s algorithm (f) Training time comparison using Syed et al’s algorithm

5 10 15 20 25
65

70

75

80

85

90

95

100

P
re

ci
si

on
 o

f S
tro

ke
 R

ec
og

ni
tio

n
in

 o
ur

 p
ro

po
se

d
in

cr
em

en
ta

l l
ea

rn
in

g
al

go
rit

hm
 (%

)

Incremental Learning Steps (Times)

 One-against-one structure
 One-against-all structure

5 10 15 20 25

0

5

10

15

20

25

30

35

Tr
ai

ni
ng

 T
im

e
in

 o
ur

 p
ro

po
se

d
in

cr
em

en
ta

l l
ea

rn
in

g
al

go
rit

hm
 (s

)

Incremental Learning Steps (Times)

 One-against-one structure
 One-against-all structure

(g) Precision comparison using our proposed algorithm (h) Training time comparison using our proposed algorithm

Figure 6. Precision and training time comparison among the two different structures (using all the four algorithms)

