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Abstract 
Adaptive sketchy shape recognition is a critical 
problem in sketch-based user interface. In this paper, an 
SVM-based incremental learning algorithm is made to 
solve this problem. Our algorithm utilizes only the 
support vectors instead of all the historical samples, and 
selects some important samples from all newly added 
samples as training data. The importance of a sample is 
measured according to its distance to the hyper-plane of 
the SVM classifier. Experimentations and evaluations 
of our algorithm are presented and show the 
effectiveness of this algorithm in reducing both the 
training time and the required storage space for the 
training dataset to a large extent with very little loss of 
precision. 

Keywords: Sketch-based User Interface, Adaptive 
Sketch Recognition, Incremental Learning. 
 
1. Introduction 
In sketch-based user interaction, the goal is to allow 
users to naturally express their ideas with freeform 
drawing. However, sketching is usually informal, 
inconsistent and ambiguous. Freehand-drawing for the 
same shape may be quite different from user to user and 
even from time to time by the same user. A system that 
is customized for a particular user even may not work 
for another different user. Hence, it is not surprising 
that the poor efficiency of recognition engines, even in 
the latest experiments[1][2], is always frustrating, 
especially for the newly added users and composite 
shapes, though numerous researches have been working 
on this subject for many years and have produced a 
wide variety of techniques. 

In our previous researches, two kernel methods have 
been developed for our online sketch recognition 
system to support users’ creativities, named Magic-
Sketch[1][3]. The rule-based sketchy shape recognition[3] 
can fits and rectifies gradually the shapes to a regular 
one based on users’ feedback of partial and overall 
structural similarity of shapes. It can adjust the 
parameters and thresholds for the systems such that 
they can yield acceptable results for new users. The 
SRG (Spatial Relation Graph)-based composite shape 
recognition approach[4] can be suitable for the shapes 
with different complexities in our experiments. 
However, as the graph isomorphism is originally an 
NP-complete problem, matching time of SRG is very 
high for real-time interaction in some cases. In fact, 

making machines learn to understand users’ drawn 
sketches requires sophisticated and highly adapted 
algorithms of sketch recognition. Benefiting from 
advances in sketchy shape recognition system could not 
be expected before the problem of user adaptation is 
well solved. Therefore, more complex, statistical 
approaches such as Neural Network and Support Vector 
Machine are required. 

Human cognition is usually performed incrementally 
and iteratively and to adapt to a particular user’s 
interaction styles means to re-train the 
recognizer/classifier with training samples obtained for 
this user. Since the newly introduced sample set is 
usually much smaller than the previously accumulated 
one, retraining with all these samples is time-
consuming and not economical. In this case, 
incremental learning is preferable. It mainly involves 
the newly obtained samples in retraining and makes the 
recognizer learn fast by avoiding full usage of previous 
samples. The Support Vector Machine (SVM)[5] is a 
new but promising technique to these pattern 
recognition problems. Although SVM has many 
excellent aspects, which are suitable for incremental 
learning, unfortunately, classical SVM learning 
algorithm does not support incremental learning. In 
order to adapt to new samples, the traditional SVM has 
to discard all the previous training results and re-train 
the new classifier on the whole data set. Hence, this 
method is not economic in time and space. Syed et al[6] 
and Xiao et al[7] proposed different incremental learning 
models based on SVM, but both of them have 
shortcomings in performance. 

In this paper, we present an SVM-based incremental 
learning algorithm and applied it to the problem of 
adaptive sketchy shape recognition. By extending two 
available algorithms (Syed et al[6] and Xiao et al[7]), we 
develop a new incremental learning algorithm. It uses 
the support vectors instead of all historical samples and 
selects some important samples from the incremental 
samples as the training data in the incremental training 
steps. As a result, both the training time and the 
required storage space are saved. This algorithm forms 
the basis of the multi-class classifier implemented in 
our on-line sketchy graphics recognition system[3][8][9]. 
Our experimental results show effectiveness and 
efficiency of this algorithm.  

2. Modified Incremental Learning based on 
SVM Algorithm 
Support Vector Machines (SVMs) have been proved 
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efficient and suitable for learning with large and high 
dimension data sets. Furthermore, investigations[6][7] 
have shown that the incrementally trained SVMs are 
better than their non-incrementally trained equivalents. 
This rests mainly with the fact that the generalization 
property of an SVM does not depend on all the training 
data but only a subset, which is referred to as Support 
Vectors (SVs). In other words, the number of SVs 
typically is very small compared with the number of all 
training samples. In fact, the SVs are those that lie the 
closest to the hyper-plane[7]. Nevertheless, there is a 
problem of how to distinguish them from the rest in the 
sample sets before training. A solution is to minimize 
the collected data sets (SCL) by making use of the 
historic result of training, so that the samples are close 
enough to the hyper-plane as SV sets (SSV). That is, 
Min(SCL| SSV⊂SCL). Additionally, the training process of 
SVMs itself may be very time consuming, especially 
when dealing with noisy data, and the samples used in 
incrementally training of SVM-classifier must be 
labeled artificially. This is tedious and burdensome, 
even an interruption of the user’s thinking process.  

Syed et al[6] proposed an incremental learning model 
based on SVM, which is to preserve only the support 
vectors (SV) at each incremental step and add them to 
the training set for the next step. However, this 
algorithm cannot maintain a stable performance in a 
general sense. Xiao et al[7] proposed a new SVM 
incremental learning method based on the boosting 
idea. Their approach employs an iterative classification-
training process to retrain the classifier. The superiority 
of this algorithm is that its ultimate close-test precision 
is guaranteed before the process stops. However, there 
is no theoretical analysis that guarantees this algorithm 
can terminate and may be a vibration of samples 
between the correctly classified sample set and mis-
classified sample set. 

We utilize the respective advantages of these two 
algorithms mentioned above and propose our algorithm. 
The iteration mechanism of Syed et al’s algorithm is 
introduced to utilize historical training samples, where 
the SVs of the historical samples are used to replace all 
historical samples in the re-training process. In the 
iteration, the previously trained classifiers evaluate all 
newly collected samples (denoted as INS) and select the 
most important instances (denoted as NS,) by 
evaluating all newly added samples using the process 
Evaluate(). Re-training is performed on the chosen 
samples and the historical SVs. Although Xiao et al’s 
algorithm makes the best use of the previously trained 
classifiers and selects some important samples from 
those newly added samples in the re-training process, it 
fails to notice that the important samples are those that 
are close to the hyper-plane. In addition, their algorithm 
is instable. These limitations do not exist in our 
algorithm.  

Accordingly, we propose an SVM-based incremental 
learning algorithm, which inserts a questioning process 
in the training process of SVM incremental learning. 

The training would only preserve the SVs at each 
incremental step and then add them instead of all 
historic data to the training sets collected in the 
questioning step. In other words, SVM classifier 
analyzes users’ incremental unlabeled samples and 
picks out the most important instances for the user to 
endorse as training samples. Denoting the training 
process of SVM as Train(SV), the process of evaluating 
all newly added samples as Evaluate(), the initial 
training samples as IS, the incremental training samples 
as INS, the temporary training samples as NS and 
working data as WS, the process of SVM incremental 
active learning can be briefly described as:  

(1). Γ=Train(IS), WS=ISSV. The random training 
samples are collected and their correct classes are 
specified until they are sufficient for training the 
classifier initially. A sub-classifier for every two classes 
is built if it does not exist, and is then trained or 
retrained with the historical SVs and newly added 
training samples to learn users’ preferences of 
sketching strokes. 

(2). Γ=Train(WS), WS=WSSV. The features of the 
samples (In sketch recognition, the features are the 
input strokes described by the modified turning 
function[10], which will be introduced in 3.2), and are 
classified with every sub-classifier. The outputs are the 
classes with the most votes from every sub-classifier. 
The newly added samples are selected if they are close 
to the hyper-plane. 

(3) .NS=Evaluate(INS), WS=WS∪NS. The newly 
added samples are evaluated. The evaluation is stored 
and gathered as the incremental training samples. 

(4). Repeat (2) and (3) until the results of SVM 
classifiers are satisfactory or enough training samples 
are obtained. 

The key in our algorithm is how to select those 
important samples in the Evaluate() process. People 
usually consider mis-classified samples are the most 
valuable to SVM classifiers because they think the 
recognition precision of SVM classifiers can be greatly 
improved if the classifiers can recognize these mis-
classified samples. For example, Xiao et al’s 
algorithm[7] uses the mis-classified samples in every 
learning step. In fact, some mis-classified samples may 
be important if they are close to the classification 
hyper-plane but others are usually useless for retraining 
the SVM classifiers. This is because SVM only selects 
those nodes that are close to the classification hyper-
plane as Support Vectors. Therefore, important samples 
are not those mis-classified samples that are far away 
from the hyper-plane. Moreover, it is not easy to collect 
these mis-classified samples because if so, the user has 
to confirm the correct class of every sample. This is not 
a feasible user scenario. Those new samples that can be 
correctly recognized and are also close to the hyper-
plane are actually important because those samples 
record the characteristics of the incremental dataset. 
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Hence, in our incremental learning algorithm, we only 
select those samples that are close to the classification 
hyper-plane, as well as the previous SVs, for re-
training.  

In our evaluating process, the interrogative samples are 
determined by estimating their distance from the hyper-
plane. Given a training set of n samples:  

)},(,),,{( 11 nn yxyxF L= , }1,1{ −+∈iy ,  

the original data space can be mapped to a higher 
dimensional feature space ƒ via a Mercer Kernel 
operator[11]: Φ(y)Φ(x)y)K(x, ⋅= , where fF: →Φ , so 
as to make these samples linearly separable in the 
higher dimension feature space. We build the hyper-
plane that separates the training data by maximization 
of the margin in the higher dimension feature space ƒ 
and the hyper-plane can then be expressed as: 
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Intuitively, there is a conflict between the precision and 
the speed if we use a constant distance threshold to 
choose the important samples. Hence, we consider 
using a dynamic threshold in our proposed algorithm. 
In the beginning steps of incremental learning, due to 
the small size of the training dataset, the time to re-train 
SVM classifiers is relatively short and the recognition 
precision of SVM classifiers is also relatively low. In 
this case, we can use a larger threshold value in the 
evaluation process such that the precision can be a little 

bit higher while the time is still acceptable. As the 
number of training data increases in later incremental 
learning steps, the cost (in both time and space) of 
training and the recognition precision will also increase. 
In this case, the evaluation process should judge the 
importance of every newly added sample more 
carefully with a smaller threshold in order to avoid 
substantial increase of the number samples necessary 
for re-training of the SVM classifiers. In another aspect, 
if we want to adapt to a new user, we can use a large 
threshold value to adapt him quickly. Using this 
dynamic threshold method, we can obtain higher 
precision with shorter training time.  

The computing complexity of the evaluation process is: 

)( svISINSO ×
 

The complexity of the evaluation process is much less 
than the training complexity. So, the computational 
complexity of the training process in our proposed 
incremental learning is: 

)( 2
svsv ISNSISO ×∪

 
Because our incremental learning method only retrains 
the classifier with the SV set and those important 
samples and INSNS << , our proposed incremental 
learning is faster compared with both the repetitive 
learning method and the method proposed by Syed et 
al[6]. It is also faster than the method proposed by Xiao 
et al[7]. 

In the previous discussion we only focus on binary-
classification problem. But real application problems 
are usually multi-classed. Over the past few years, a lot 
of progress has been made to construct multi-class 
classifiers based on the SVM theory. Besides the two 
classical structures, i.e., one-against-all and one-
against-one, Platt et al[12] adopt the Decision Directed 
Acyclic Graph (DDAG) to combine many binary (two-
class) classifiers into a multi-class classifier. Basically, 
the algorithm is based on binary classifiers and it is 
similar to the one-against-one structure. Dietterich et 
al[13] and Allwein et al[14] also construct multi-class 
classifier by combining the outputs of several binary 
ones. Typically, the combination is done via a simple 
nearest-neighbor rule, which finds the class that is the 
closest in some sense to the outputs of the binary 
classifiers[15]. Weston et al[11] have proposed an 
extension to solve multi-class classification problems in 
one step. But they cannot get a better result than the 
two classical structures in experiments. The one-
against-all structure is the most commonly used multi-
class classification utilities. However, the one-against-
one structure shows better efficiency than the one-
against-all structure in incremental learning, especially 
for a large set of samples with a small number of 
classes. In this paper, we will use two classical 
structures (one-against-all and one-against-one) to build 
multi-class classifiers for our application-sketch 
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recognition. 

Define the training sets as consisting of m classes and n 
samples. For one-against-all structure, m sub-classifiers 
are needed, with n samples for each classifier. For one-
against-one structure, m(m-1)/2 sub-classifiers are 
needed. Based on the max-win scheme[14], for the 
sample to be classified, each sub-classifier casts one 
vote for its preferred class. The final result is the class 
with the most votes. Compared with traditional one-
against-all structure, one-against-one has the following 
advantages: firstly, although intuitively simple, one-
against-one structure actually controls the Vapnik-
Chervonenkis (VC)[5] dimensions on the whole training 
set, while the decision planes in one-against-all 
structure are always too complicated to avoid over-
fitting. Secondly, in the one-against-all structure each 
classifier has to be trained using all the n samples. It is 
very time-consuming compared with the one-against-
one structure. Finally, compared with one-against-all 
structure, one-against-one structure is more suitable for 
incremental learning. That is, if a new sample is added, 
for one-against-all structure we need to train each of the 
m classifier with n+1 samples; but for one-against-one 
structure we only need to train m-1 classifier each with 
2(n+1)/m samples averagely. Hence we draw a 
conclusion that one-against-one structure is more 
suitable than one-against-all structure for incremental 
learning.  

3. Experiments for Sketchy Shape Recognition 
In order to validate our proposed approach, we applied 
all the algorithms in a real application[3] We construct 
classifiers based on repetitive learning and the three 
SVM-based incremental learning algorithms for 
classifying the sketchy shapes drawn by users and 
compare their performance.  

We use turning function[10] to extract stroke features. 
Turning function is a function of arc s on a polygon A, 
as shown in Figure 1. It represents the cumulative 
turning angle from a start point on the boundary of A to 
the current point. In order to make sure the sketches are 
independent of size and location, we need to normalize 
the sketches before feature extraction. Meanwhile, we 
add some restrictions to turning function to simplify the 
problem and thus modify the turning function as  
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(a) Polygon (b) turning function  
Figure 1 Turning Function 

But it is mainly used to extract single-stroke features. 
For multi-stroke sketches, we introduce the virtual 

strokes to link the end of one stroke with the start of the 
next one orderly and continuously, as shown in Figure 
2. In this way, we can transform a multi-stroke sketch 
to a single-stroke one. Then we can use turning 
function mentioned above to extract the stroke features. 

 
Figure 2 Turning Function 

Four algorithms are compared in the experiment: the 
repetitive learning algorithm, Syed et al.’s and Xiao et 
al.’s incremental learning algorithm, and our proposed 
incremental learning algorithm. We collected two 
datasets, a 5-class dataset and a 14-class dataset[16][17]. 
The 5-class dataset is used to validate user adaptation of 
our proposed algorithm. The 14-class dataset together 
with the 5-class dataset are used to evaluate and 
compare the performance of the four algorithms. In 
addition, the 14-class dataset is used to compare the 
performance of the four algorithms with two different 
multi-class structures: one-against-one and one-against-
all.  

In order to collect the 5-class dataset, we asked a user 
to draw each shape (triangle, quadrangle, pentagon, 
hexagon, and ellipse) repeatedly with two different 
styles: one using the mouse and the other using the 
pen/tablet. In total, we have collected 1367 sample 
shapes drawn with pen/tablet and 325 samplers drawn 
with mouse. We use the turning function[8] as the 
feature vector of the polygon representation of the 
sketchy shape. In this paper, we use a 20-dimension 
feature vector and after transformation we can have 40 
samples for each sample. Therefore we have 54680 
samples for the pen/tablet style and 13000 samples for 
the mouse style in total. We randomly select 20210 
samples of the pen/tablet to form a test set, TS1, and use 
12000 samples of the mouse style to form another test 
set, TS2. Then, we randomly select samples from the 
remained samples of the pen/tablet style to form 39 
incremental training sample sets (denoted as: IS1, IS2… 
IS39). The first 6 incremental training sets have 100, 
100, 120, 150, 300, 700 samples, respectively, and each 
of the rest 33 sets has 1000 samples. The remained 
samples of the mouse style form a training set with 
1000 samples (denoted as IS40) and we add this dataset 
into the incremental learning process as the last training 
set. Specially, for Xiao et al.’s algorithm, we use 
IS1+IS2+IS3 as the first training set because it cannot 
work well (cannot terminate) if the training set is too 
small.  

For the 14-class dataset, we collected 52802 samples of 
14 classes of commonly used strokes. The sketchy 
shapes and their regular shapes for the 14 classes of 
strokes are shown in Figure 3. Each sample is 
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represented using a 20-dimentional features vector 
based on the turning function. We randomly select 
21932 samples to constitute the test set (TS3) and then 
randomly select samples from the remaining samples to 
form 24 incremental training sample sets (denoted as 
S1, S2… S24). The first 5 incremental training sets have 
300, 300, 370, 500, and 900 samples, separately, and 
each of the rest 19 sets has 1500 samples, respectively. 
Specially, for Xiao et al.’s algorithm, we use S1+S2+S3 
and S4+S5 as the first two training sets because it cannot 
work well for small training sets.  

 

(a) Sketchy strokes (b) Standard strokes 
14131211 10 9 8

765 4 3 2 1

 
Figure 3 Strokes of 14 classes frequently used in sketching 

In all our experiments, a RBF (Radial Basic Function[5]) 
kernel is used and the implementation of the training 
process Train() is the same as in SVMTorch[18]. The 
parameter we used is δ= 2 , which can yield best 
performance after many tests. In all comparison, the 
discarding rate of Xiao et al.’s algorithm is 0.5. All 
experiments are done on an Intel Celeron PC (with a 
2.4G Hz CPU and 256MB memory) running on 
Microsoft Windows XP Professional.  

4. Performance Evaluation 
We have done some experiments to evaluate and 
compare the performance of the four algorithms with 
both the 5-class dataset and the 14-class dataset. In the 
experiment on the 14-class dataset, we also compare the 
performance of one-against-one and one-against-all 
multi-class structures, with all four incremental learning 
algorithms.  

Figure 4 shows the performance comparison among the 
four algorithms using the same one-against-one 
classifier structure on the 5-class dataset. For each 
algorithm, we use the same 40 incremental training 
sample sets to train them incrementally and record the 
incremental training time in Figure 4(c). After each 
incremental training step, we test it using the two test 
sets, TS1 and TS2, respectively, and record their 
classification precisions. Figure 4(a) and (b) show the 
curves of the precisions. Figure 5 shows the 
performance comparison among the four algorithms 
using two different classifier structures on the 14-class 
dataset. For each structure, we use the same 24 
incremental training sample sets to train them 
incrementally and record the incremental training time 
in Figure 5(b) and (d). We also test their classification 
precisions on the test set (TS3) and show them in Figure 
5(a) and (c). 

Theoretically, incremental learning is much faster than 
repetitive learning. Figure 4(c) and Figure 5(b)(d) have 
proved this point. Repetitive learning is much more 

time-consuming than the other three incremental 
learning algorithms, and its training time increases 
sharply as the scale of the training set increases. The 
training time of Xiao et al.’s algorithm is always 
fluctuant and Syed et al.’s algorithm shows a better 
effect in the training time. Compared with the other 
methods, our proposed incremental learning algorithm 
is the fastest, as shown in Figure 4(c) and Figure 
5(b)(d). From these figures, we can see that the 
recognition precisions of all four algorithms are nearly 
close. The loss in precision of our incremental learning 
algorithm is very small. From Figure 4, we can see that 
the loss is only 0.75% (on TS1) and 0.37% (on TS2) 
compared with the repetitive learning algorithm, 0.4% 
(on TS1) and 0.15% (on TS2) compared with Syed et 
al.’s algorithm. Our algorithm outperforms Xiao et al.’s 
algorithm in most cases.  

We also did some experiments to compare the two 
structures of multi-class classifiers using all the four 
SVM-based learning algorithms. From the experiments, 
as shown in Figure 6, we can see the one-against-one 
structure classifiers outperform the one-against-all 
structure classifiers in both training time and 
classification precision. This is why we finally adopt 
the one-against-one structure in our system.  

In our on-line graphics recognition system, we have 
realized a multi-class SVM classifier based on the one-
against-one structure. Each sub-classifier is based on 
our proposed incremental learning algorithm. Although 
the initial precision (95.53%) is very high in a general 
sense, it still may not be suitable for a specific user’s 
drawing style. Users can correct these recognition 
errors through the UI of our system[3] immediately and 
the system will keep all these samples. After several 
samples are corrected, users can command the system 
to do incremental learning on these newly obtained 
samples. After training for less than 30 seconds, the 
new classifier is adaptive to the user’s drawing style. 
Now, the system can correctly recognize them without 
making any previous mistakes.  

5. Conclusion 
Adaptation is a critical problem in user-specific 
freehand sketch recognition systems. SVM-based 
incremental learning is a good solution to this problem. 
Compared with repetitive learning, incremental 
learning can save much time in re-training with little or 
no loss of recognition precision. By utilizing the 
respective advantages of the two existing SVM-based 
incremental learning algorithms[6][7], we proposed a 
SVM-based incremental learning algorithm.  Our 
proposed incremental learning algorithm can reduce 
both the training time and the required storage space for 
the training dataset to a large extent with very little loss 
of precision. Experiment results have shown that this 
algorithm is effective for user adaptation in on-line 
sketch recognition systems.  

 Nevertheless, the computational model of SVM 
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classifier must be parameterized. This means that it can 
only deal with single strokes. So, we made a 
supposition that all composite shapes are composed of 
some continuous strokes, and introduce the virtual 
strokes to link these continuous strokes orderly and 
translate the multi-strokes of composite shapes into a 
single stroke. The main problem of this method is that 
the strokes are not the basic constitutive geometric 
primitives of a shape for human cognition and the shape 
representation based on a single stroke composed of 
physical stokes and virtual strokes is not structural and 
unique for user. In fact, the underlying factors that 
determine the true identity of freehand sketches remain 
to be intractable and it is probably safe to say that no 
simple scheme is likely to achieve high recognition and 
reliability rates not to mention human performance. So, 
we must do online sketchy shape recognition based on a 
dynamic user modeling, which would model user’s 
physical drawing contexts incrementally and user’s 
subjective evaluations of the recognized objects 
accumulatively. The goal is to cope with the variations 
and ambiguities inherent in sketchy drawings so as to 
interpret the visual scene as the way the user intended. 
These are our ongoing research direction. 
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(a) Precision comparison (on TS1) (b) Precision comparison (on TS2) (c) Training time comparison 

Figure 4. Performance evaluation among the four algorithms using one-against-one classifier structure on the 5-class dataset (δ= 2 for the 
kernel functions of all four algorithms, and the discarding rate of Xiao et al.’s algorithm is 0.5). 
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(a) Precision comparison using 1-1 structure (b) Training time comparison using 1-1 structure 
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(c) Precision comparison using 1-m structure (d) Training time comparison using 1-m structure 

Figure 5. Performance evaluation among the four algorithms using different multi-class classifier structures on the 14-class dataset 
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(a) Precision comparison using the repetitive learning algorithm (b) Training time comparison using the repetitive learning algorithm
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(c) Precision comparison using Xiao et al’s algorithm (d) Training time comparison using Xiao et al’s algorithm 
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(e) Precision comparison using Syed et al’s algorithm (f) Training time comparison using Syed et al’s algorithm 
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(g) Precision comparison using our proposed algorithm (h) Training time comparison using our proposed algorithm 

Figure 6. Precision and training time comparison among the two different structures (using all the four algorithms) 

 
 


