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Abstract 
One of the goals of three-dimensional (3D) computer 
graphics is to create virtual realistic images of 
dynamically changing scenes. In this paper, we designed 
and implemented a system that processes multiple 
synchronized video sequences and generates 3D 
rendering of dynamic objects in real time. The video-
image-based virtual volumetric scene reconstruction 
system acquires synchronized multiple video images and 
renders dynamic real-world scenes. It includes an 
efficient image-based reconstruction scheme that 
computes and shades 3D objects from silhouette images, 
as well as it includes a silhouette extraction scheme that 
is robust to illumination change. The proposed system is 
relatively low-cost and does not require foregoing any 
special hardware or specific environment. 

Key words: scene reconstruction, visual hull, image-
based rendering 

1. Introduction 
In computer graphics and computer vision, volumetric 
scene reconstruction of a 3D model from multiple two-
dimensional (2D) photographic images is already an old 
and one of the most important problems. It remains one 
of the most difficult problems. But, many researchers 
have been working on the creation of virtual scenes from 
images in many applications, such as virtual reality, 
games, multimedia, robot navigation, and special effects 
for moving pictures [1]. 

Generally, the volumetric structure of a scene can be 
reconstructed if its material characteristics, illumination, 
and geometric constraints are carefully considered. The 
methods used to acquire 3D information on dynamically 
changing scenes are classified into two approaches, e.g., 
the active and the passive method according to the types 
of imaging sensors. 

Active approaches use structured lights or laser scanners 
to directly acquire 3D information about the subject [2]. 
They produce high quality data since the emitted lasers 
or lights directly obtain the range to the parts of the 
subject. However, the equipment used in active 
approaches is almost considerably expensive and have 
physical restrictions such as particular light and special 

painting. As well, they are not adequate to capture 
dynamically changing scenes in real-time as it takes a 
long time to get data for one scene. 

Compared to active approaches, passive approaches 
extract 3D data indirectly without contact with the 
object. Utilizing the picture images taken from cameras 
is representative of passive approaches [1][3][4]. 
Traditionally extracting 3D data using passive imaging 
is less accurate than using expensive active sensors. Also 
it needs dramatic computing time. 

The most ideal system must be able to construct high-
quality images in a short time using low-cost equipment. 
Moreover, it should not be restricted to any environment 
and should have a broad field of application that 
encompasses even such areas as sports, dance, and 
remote video-conferencing. 

In this paper, we designed and implemented a system 
that acquires synchronized multiple video images and 
reconstructs virtual scenes cost-effectively using the 
silhouette images. The system should be capable of real-
time synchronous capturing of camera video images, 
camera calibration, and silhouette extraction that is 
invariant to illumination change. It computes and shades 
3D objects using the image-based visual hull. It 
contributes to the speed-up and quality improvement of 
the previous reconstruction methods. In the next chapter, 
we roughly describe techniques to reconstruct scenes 
from photographs. Then we explain the system’s 
algorithm. In Chapter 4, we show the designed system 
structure and the experimental results. And we conclude 
this paper in Chapter 5. 

2. Virtual Scene Reconstruction Techniques 
There are many methods for 3D scene reconstruction 
based on passive imaging. The active methods require 
special hardware or a specific environment. But passive 
methods do not need the special hardware except some 
camera and capture board. The passive methods are 
divided into voxel coloring, stereo vision, image-based 
rendering, and visual hull. 

2-1. Voxel coloring 

Voxel coloring depends on color consistency [5-8]. If 



   

the colors from the different cameras are the same at a 
visible point in 3D space, that point exists. Otherwise, 
that point does not exist. The camera, illumination, and 
other external conditions may affect color consistency 
accordingly, thereby yielding incorrect results. 

2-2. Stereo vision 

Stereo matching is used to obtain the range information 
from a pair of 2D images. In this method, the robust 
search for the same point in two images is very difficult 
[9-10]. As such, the camera views are often arranged 
along the baseline, and in most cases, assuming a limited 
disparity range. Another limitation of the stereo 
matching method is the occlusion problem.  

2-3. Image-based rendering 

Image-based rendering is another method of modeling 
and rendering [11-13]. The key advantage of this 
technology is its realistic results. By synthesizing the 
resulting image directly from images without the 
traditional modelling process, we can obtain the 
resulting image regardless of the geometric complexity 
of the object and the complexity of the image. However 
the depth is almost flat. 

2-4. Visual hull 

The visual hull is defined as a maximal volumetric shape 
that makes the same silhouette from all views of the real 
object [14]. It is similar to the convex hull, although it 
can have holes. When many cameras are used, the 
inferred visual hull approximates the original shape of 
the object. However the obtained visual hull does not 
correspond to the original shape of the object because of 
its concave regions [15-16].  

3. System Algorithms 
3.1 Algorithm design objective 

The first system developed in this paper was a trial of 
the method, using the stereo vision that is similar to 
Kanade’s method, to determine the evaluation factor of 
system design and algorithm selection. We made an 
effort to reconstruct the object in 3D virtual space by 
combining several depth maps calculated from feature 
disparities in captured real scenes. With this system, we 
found out that disparity is not robust to texture, 
illumination, and background. Moreover stereo-based 
3D reconstruction is expensive, and it is also difficult to 
combine the resulting depth maps such as zippering. 

Through developing this system, we defined the design 
criteria for implementation. First, the system should not 
require any special hardware or specific background to 
acquire the real scene, e.g., special illumination 
equipment such as that which emits the grid lights or the 
laser range scanner should be unused. Second, the 
algorithm should be so handy that special hardware 

would not be required to process the reconstruction. 
Special machines such as digital signal processors 
(DSPs) or a distributed computing environment using 
multiple processors or heavy workstations should not be 
assumed. Third, implementation should produce the 
result continuously within a low latency time after 
acquiring the input images. In the end, the system should 
be real-time. Fourth, the resulting scene should be as 
realistic as possible. 

For this paper we selected the passive acquisition 
method to satisfy the first condition, and the visual hull 
method to satisfy the second and the third conditions. 
Furthermore, we used the image-based rendering 
technique to satisfy the fourth condition. 

In addition, we used the image-based visual hull to 
execute image-based rendering, with the intersection of 
rays rather than in the voxel space to achieve the cost-
effective results. 

3-2. Visual hull sampling 

In this paper, a virtual image reconstruction scheme 
based on the silhouette image from each camera is used 
to reconstruct the object based on the visual hull of 3D 
virtual space (Figure 1). After polyhedra are generated 
from the center of projection (COP) of the camera and 
from the silhouette image corresponding to that camera, 
the visual hull of the object is obtained by intersecting 
these polyhedra. In addition, the range image is obtained 
by projecting the rays from the COP towards the object 
at equal spacing after assuming that a virtual camera 
exists. This process is called visual hull sampling. 

 
Figure 1 Visual hull: Visual hull is defined by intersection of 
cone-shaped polyhedra from extrusion of image silhouettes. 

When the calibration information of the cameras to be 
used in capturing scenes as well as the captured images 
are given, we can calculate the range image of the virtual 
camera.  
In this calculation, the projective geometry is very 
important. We only consider the pinhole camera model. 
Let ),( yx pp  be a center of image coordinates, f be a 
focal length, dpx  and dpy  be x, y directional lengths 



   

corresponding to one pixel size, then projective 
transform of a point  T

c zyxX ]1,,,[= in 3D 
homogeneous space is written as  
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In the above equation K  is called the camera matrix. 
Since  cX  is a point in the camera coordinate system, 

cX needs to be transformed to a point in the world 
coordinate system. When the rotation matrix of a camera 
is R   and a vector C  represents the center of the 
projection (COP) of the camera, this transform is 
expressed as followings: 
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Substituting cX  in the equation (2) for cX  in the 
equation (1) we can get the following equation. 
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If we express  X  in the non-homogeneous coordinate 
form, that is  TzyxX ],,[ˆ = , the equation (3) can be 
written as 

 )ˆ()ˆ)(( 1 CXPCXKRU −=−= −                             (4) 
where  P  is the transformation from image coordinates   

TvuU ]1,,[= to a line in 3D space. So, the image 
coordinates corresponding to the 3D point can be 
computed by the equation (4). And a line through two 
points, the COP of a camera and an image point U, is 
expressed by 

 tPUCtX +=)(                                                     (5) 
where t  is a parameterization variable for the line and is 
used to describe a particular 3D position on the line. 

If we carefully consider the relationship between rays of 
one camera and an image space of the other camera, we 
will realize that many 3D rays from one camera are 
projected to a single line in image space of the other 
camera. Figure 2 shows an example of this relationship. 
The single line is called an epipolar line. Fundamental 
matrix depicted in the equation (6) relates a pixel of one 
camera image to an epipolar line. 

 PP
ee

ee
ee

F

xy

xz

yz
1

0''
'0'

''0
−′

















−
−

−
=                                  (6) 

where coordinate T
zyx eee ]',','[   is called the epipole, 

the projection of the COP of one camera to the image 
space of the other camera. Using the fundamental matrix 
we can compute the coefficients, a , b  , and  c  of the 
line, 0=++ cbyax  

We compute the silhouette image for each image, and 
subsequently initialize the virtual range set image to the 
interval from 0 to infinity. A pixel of the virtual range 
set image represents the interval wherein the object may 
exist. After that interval is determined for each image, 
the virtual range set image is reduced via the set 
intersection operation. 

The process for computing the virtual range set image 
follows. First, we calculate the 3D ray from the 
calibration information of the virtual camera. We then 
project that ray onto the image space of one real camera 
to get the projected line. Next we find the intersection 
points of the line with the silhouette edges. We calculate 
the recovered 3D-line intervals by reprojecting the 
intersection points into the 3D space. Finally, we find 
the intersection intervals of the virtual range set image 
with the recovered 3D line intervals. 

3-3. Performance improvement of the visual hull 
sampling algorithm 

When the virtual scene is reconstructed using the visual 
hull method, there are various techniques to improve the 
speed and correctness of the reconstruction algorithm. 
First, we can utilize the line caching to calculate the 
intersecting points of the silhouette edges and the 
projected line. Second, the code optimization strategy 
can be used to speed up the system. 

 

 

Figure 2 Multiple rays of one camera are projected to the same 
line in the image plane of another camera. 

If we carefully consider the relationship of the camera 
rays and another image space, we will realize that many 
3D rays from the camera are projected to the same line 
in another image space. This projected line is called the 
epipolar line. Figure 2 shows an example of this 
relationship. 



   

Because of this fact, the process of finding the 
intersection intervals of the projected line and the 
silhouette edges is redundant. In this process, line 
caching can be used. When caching is utilized, we first 
compute the caching index to check if the intersection 
intervals have already been calculated. In case the cache 
bucket is already full, we simply use the intervals in it. 
In case the cache bucket is empty, we find the 
intersection intervals to save those in the cache bucket. 
For the cache index, we use the further point from the 
epipole among the intersection points of the projected 
line and the boundary of the segmented object (Fig. 3). 

 

 

Figure 3 For reducing the computation cost, intersection points 
of the epipolar line with the rectangular boundary surrounding 

the object are used as a caching index. 

 

Figure 4 Indexing points are calculated separately for nine 
cases according to the relative position of the epipole to the 

rectangular boundary of an object. 

Instead of calculating the distances to the two 
intersection points, we directly find the point that will be 
used as the cache index through the positional 
information of the epipole, which will more significantly 
reduce the computing time. The positional relation of the 
epipole and the rectangle boundary of the object can be 
classified into 9 cases, which are shown in Figure 4. In 
this figure, we use the intersection point of the projected 
line and the thick boundary as a cache index. 

As a second method to speed up the system, code 
optimization techniques are employed. When the 
intersection points of the projected line and the 
silhouette edges are computed, the digital differential 
analyzer is utilized to reduce the addition and 
multiplication operation of the real numbers. In this 
system, we used the floating-point version of the 
Brensenham’s line drawing algorithm because the end 
points of the projected line are given in real numbers. 
While casting the real number to an integer number can 
speed up the system, it may compromise its accuracy. 

Static memory can also be allocated instead of dynamic 
memory to speed up the system. However, dynamic 
memory is preferred since the intersection intervals in 
the 2D or 3D space vary in relation to the silhouette 
image and the virtual camera. 

Another optimization technique involves the reduction 
of the floating-point operation. The distance from the 
COP of the camera to the object is represented as a real 
number, in the same way that the position of the COP of 
the camera and the projection matrix are represented as a 
real number. By converting these real numbers to integer 
numbers the system will become to be fast. 

Thus, the system became two times faster than before 
through code optimizations. 

4. System Implementation and Results 
4-1. System overview 

Four sets of general color-image, NTSC-output CCD 
camera (Samsung SC340, interlaced scan, 1CCD, Bayer-
patterned) and 5mm~15mm canon lenses with 4 frame-
grabbers are used to capture moving images, while 60Hz 
AC power is used for synchronization. With only one 
PC, the system captured 320x240 24-bit images in real 
time (30Hz) from 4 cameras much more easily than 
Kanade’s system and other systems, with comparable or 
better performance. 

4-2. Silhouette extraction 

Generally, the extraction of the silhouette employs 
background subtraction. Illumination changes and 
shadows make extraction of the correct silhouette 
difficult. In this paper, we implemented a mathematical 
model between the illumination intensity, reflection 
index of objects, and pixel values of the images [17]. 
Assuming that the distribution of illumination intensity 
in a very small region is constant, we define the 
variables as follows: 

▪ r: reflection index of one point of the object 
▪ α: illumination intensity of one point of the object 
▪ β: bias value of the capturing equipment 

 



   

The pixel value of the image is defined as: q= αr + β. 
Here, the change in the illumination intensity affects the 
pixel value linearly. Thus,  

p = q-β = αr. 

Therefore, the pixel values of the reference image and 
the input image as follows: 
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The ratio of illumination is written as: 
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Assuming α is not changed, the value t is also constant at 
the same value r. Using this relationship, the variation of 
the illumination intensity in the same position according 
to the illumination change is calculated as shown in 
Figure 5. 

 

Figure 5 Variation curve of the pixel value (bottom left) and 
the standard deviation (botom right) according to 7 different 
illumination conditions of the same position 

In the image, the pixel value of the x and y coordinates 
is written as: (x, y) = (αxr + β, αyr + β). Therefore, we 
can calculate β using the crossing point of the graph as 
follows: 

Fitted = (-5.747, -4.334), 
β =(-5.75-4.33)/2= -5.04,    σ^2 = 2.75 

We use the standard deviation as the threshold value, 
when the window size is 7x7 pixel. The boundary of the 
object that is robust to the illumination condition is 
consequently obtained by determining the highly 
changing position. 

Figures 6 show the sample of the input image, and 
Figures 7 and 8 show the resulting image and the 
segmented image. 

 

Figure 6 Input image 

 

Figure 7 Resulting image 

 

Figure 8 Segmented image 

4-3. Virtual scene reconstruction results 

From our implementation of the virtual scene 
reconstruction system, we saw that the system could 
reconstruct the virtual image at a speed of about 8 
frames per second using the 320x320 24-bit color 
images from four cameras. Figure 9 and 10 show the 
sample of reconstructed images. 



   

 

Figure 9 The virtual image 1 

 

Figure 10 The virtual image 2 

 

5. Conclusion 
In this paper, we implemented a system that can 
reconstruct virtual scenes from real video streams 
without the need for special hardware, using only one 
PC with general video capturing components. The 
system was implemented by computing visual hull range 
data sampled from a virtual camera, using the camera 
ray’s projection and intersection with the silhouette 
edges and texturing the computed range image through 
the image of the camera that was most similar to the ray 
direction of the virtual camera. The system registered an 
almost real-time performance from continuous video 
streams using only an ordinary PC system. 

Therefore, the system can be applied to various fields 
given an improved quality of the generated image and 
the system’s performance. Some Applications of this 
system include: the real-time remote virtual presence 
system; digitization of sports, dance, martial arts, etc.; 
and the virtual camera walking system for cinema 
production, including 3D object modeling. 

Ensuring the quality of the images for use on broadcast 
and cinema requires high-quality segmentation, more 
accurate camera calibration, and refinement of the visual 
hull through stereo vision or voxel coloring. Enhanced 
image-based rendering techniques may also be tried to 
improve image quality. 
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