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Abstract

This paper investigates the influence of network delays
and delay jitter on the consistency and fairness among play-
ers in networked racing games. To maintain the consis-
tency and fairness, we deal with the A-causality control
as causality control and dead-reckoning as prediction con-
trol. By experiment, we make a performance compari-
son among the A-causality scheme, the dead-reckoning
scheme, a scheme which carries out the A-causality con-
trol and dead-reckoning together, and a scheme which per-
forms neither of the two types of control. As a result, we
show that the combination use of the two types of control
can keep the consistency and fairness in good condition.

Key words: Networked racing game, Consistency, Fair-
ness, Causality control, Dead-reckoning, Experiment

1. Introduction

Broadband access to the Internet is enabling networked
real-time games such as networked racing games and net-
worked shooting games. Such games have severe con-
straints on the delay from input of information to its out-
put. Also, the consistency of the state among players and
the causality of input events are important. These features
largely influence the outcome of a race (i.e., victory or de-
feat) in the games.

However, owing to the network delay and its jitter, the
causality and consistency among players may be disturbed.
As the difference in network delay among players becomes
larger, the positions of racing cars displayed at one player
become more largely different from those at another player.
This brings the unfairness among the players. To solve
these problems, we need to carry out causality control [1]-
[4] and prediction control [4], [S], and so on.

In [1], the authors demonstrate that the causality can be
maintained by the A-causality control. However, since a
number of packets are discarded when the network load is
heavy, the consistency and fairness among players are dis-
turbed. Pantel and Wolf illustrate the effectiveness of dead-
reckoning [6], which is one of prediction control schemes,
by applying dead-reckoning to several kinds of games [5].
In [4], Diot and Gautier propose the bucket synchroniza-
tion, which carries out causality control and prediction con-
trol together. However, they do not make a performance

comparison between the bucket synchronization and other
schemes. Also, they do not clarify how the joint use of the
two types of control is superior to the individual use of each
type of control. Furthermore, to the best of the authors’
knowledge, there is no paper which clarifies the influence
of the network delay and its jitter on the consistency and
fairness quantitatively.

This paper deals with the A-causality control as causal-
ity control and dead-reckoning as prediction control. By
experiment, we make a performance comparison among
the A-causality scheme, the dead-reckoning scheme, a
scheme which carries out the A-causality control and dead-
reckoning together, and a scheme which performs neither
of the two types of control. We also investigate the influ-
ence of the network delay and its jitter on the consistency
and fairness in the four schemes.

The rest of this paper is organized as follows. Section 2
discusses the consistency and fairness in networked rac-
ing games and describes their performance measures. Sec-
tion 3 explains the four schemes. The method of the exper-
iment is explained in Section 4, and experimental results
are presented in Section 5. Section 6 concludes the paper.

2. Consistency and fairness

We suppose in this paper that two players (players 1 and
2) play a networked racing game. We also assume that the
game is implemented based on the peer-to-peer model. In
what follows, we first handle the case in which network de-
lays between the two players are small. Next, we deal with
the case in which the network delays are large or largely
different from each other.

In Fig. 1, we show displayed images of the racing cars of
players 1 and 2 in the former case. The image on the left-
hand side in the figure is displayed at player 1, and that on
the right-hand side is at player 2. For simplicity, we assume
in the figure that the racing course is straight. Players 1
and 2 drive cars 1 and 2, respectively. At each player, the
player’s car and the other player’s car are displayed. The
information about the position of player 1 (2)’s car arrives
late at player 2 (1) owing to network delays. Therefore,
if we update the position of the car 1 (2) at player 2 (1)
without any control, the position of car 1 (2) at player 1
(2) is different from that of car 1 (2) at player 2 (1). This
means that the state at player 1 is not consistent with that at
player 2.
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Fig. 1. Displayed images at players 1 and 2 in the case where network
delays are small.

In order to discuss the consistency quantitatively, we in-
troduce the positional error of a car, which is defined as the
difference between the position of car 1 (2) at player 1 and
that at player 2. Let us denote the positions of cars 1 and
2 at player 1 by y1,1 and y» 1, respectively, at a given time
and those at player 2 by y 2 and 2 2, respectively. Then,
the positional error dq of car 1 is given by di = y1,1 — 1,2,
and that of car 2 is do = Y22 — y2.1 (see Fig. ). For
simplicity, we here assume that d; > 0 and do > 0. If
d; = dy = 0, the consistency is maintained. Otherwise,
the consistency is not strictly kept. However, even when
dy # 0 or dy # 0, the outcome of the race (i.e., victory or
defeat) at player 1 is the same as that at player 2 if which
car is ahead of the other car is the same between the two
players T . In Fig. 1, since d; # 0 and dy # 0, the consis-
tency is disturbed; however, which car is ahead of the other
car is the same between the two players; this is because the
values of d; and dy are small.

As a performance measure for the consistency, this paper
introduces the inconsistency rate of the positional relations
of the two cars (that is, which car is ahead of the other car)
between the two players. We obtain the positional informa-
tion about the two cars at regular intervals and compare the
positional relation between the two cars at player 1 with
that at player 2. The inconsistency rate is defined as the
ratio of the number of disagreements between the two po-
sitional relations to the total number of comparisons. This
measure is very important since the positional relations are
closely related to the outcome of a race (i.e., victory or de-
feat).

Then, we handle the case in which the network delays
are large or largely different from each other as shown in
Fig. 2. Figure 2 (a) illustrates the case in which the posi-
tional relations of the two cars between players 1 and 2 are
not the same. In Fig. 2 (b), the positional relations of the
two cars between players 1 and 2 are the same; that is, car 2
is ahead of car 1 at the two players. We set the values of

T When the course is curved, we obtain the positional error by approxi-

mating the curve with multiple straight lines which have a constant length.

1 It should be noted that generally, prediction control schemes produce
positional errors.

(a) Case in which the positional relations of the two cars between
players 1 and 2 are not consistent
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(b) Case in which the positional relations of the two cars between
players 1 and 2 are consistent

Fig. 2. Displayed images at players 1 and 2 in the case where network
delays are largely different from each other.

d; and ds in Fig. 2 (a) to the same as those in Fig. 2 (b),
respectively (d; > d» in Fig. 2). In Fig. 2 (b), since car 2
is largely ahead of car 1 at player 2, car 2 is slightly ahead
of car 1 at player 1. If car 2 is ahead of car 1 at player 2
by more than d; + do, the positional relations can be the
same (see Fig. 2). Also, at player 1, the positional rela-
tions can be the same if car 1 is ahead of car 2 by more
than d; + ds. That is, even if the consistency of the state is
violated, the consistency of the positional relations can be
preserved; this depends on the positional errors of the two
cars (i.e., dy and d2). As the values of d; and d increase,
it becomes more difficult to keep the same positional rela-
tions.

In addition, large differences between d; and d» lead to
the unfairness between the two players. This is because as
the positional error becomes larger, the car of a player is
displayed more largely late at the other player.

To discuss the fairness in further detail, we assume that
the position of car 1 at player 1 is equal to that of car 2 at
player 2; that is, y1,1 = ¥2,2 (see Fig. 3). This means that
the skills of the two players are equal to each other. As de-
scribed earlier, when the difference in the position between
the two cars at player 1 or 2 is larger than d; + da, the po-
sitional relations between the two players can be the same.
Thus, if player 1 can advance the position of car 1 from the
current position by di, the positional relations can be the
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Fig. 3. Displayed images at players 1 and 2 in the case where player 1
has the same skill as player 2 (i.e., y1,1 = y2,2)-

same between the two players. As in player 1, if player 2
can advance the position of car 2 by ds, the positional re-
lations can also be the same. In Fig. 3, since d; > do,
player 1 needs to advance the position of car 1 largely than
player 2 in order to have the same positional relations be-
tween the two players. Therefore, we say in this paper that
player 1 is disadvantageous in terms of the fairness.

To discuss the fairness between the two players quan-
titatively, we employ the difference d; — ds in the posi-
tional errors between the two cars. As in Fig. 3, when
d1 — do > 0, player 1 is unfavorable in terms of the fair-
ness. When d; — ds = 0, players 1 and 2 are even. When
d; — d2 < 0, player 2 is disadvantageous.

3. Schemes for performance comparison

In this section, we handle four schemes for a perfor-
mance comparison; the A-causality scheme (referred to as
Causality in this paper), the dead-reckoning scheme (DR),
and a scheme which carries out the A-causality control and

tual position is transmitted as an MU. Otherwise, the in-
formation is not transmitted. In the convergence technique,
when an MU is received, we correct the position over sev-
eral times in order to correct the position gradually until the
difference becomes less than Ty,.. In this paper, for simplic-
ity, we make the convergence at a time.

NC outputs MUs on receiving the MUs at each terminal.
When we employ NC or DR, an MU which is captured at
each terminal is output at its generation time immediately.

In Causality, when each terminal receives an MU, the
terminal saves the MU in the terminal’s buffer until a time
limit and then outputs it. The time limit is equal to the
generation time of the MU plus A seconds. If the MU is
received after the time limit, it is discarded. In this pa-
per, we assume that globally synchronized clocks are em-
ployed; that is, the clock ticks at the two terminals have the
same advancement, and the current local times are also the
same't .

When we use DR+Causality, if an MU is received within
the time limit (i.e., its generation time plus A seconds) of
the MU at each terminal, the MU is saved in the termi-
nal’s buffer until the time limit and then used for the pre-
diction and convergence by the same method as that of DR.
If the MU is received after the time limit, it can be used for
the prediction at the next output time. In Causality and
DR+Causality, each MU which is generated at each termi-
nal is also stored in the terminal’s buffer until its time limit
in order to be output.

4. Method of the experiment

Figure 4 shows displayed images of a networked rac-
ing game which was used in our experiment. In order to
generate the computer data traffic of the same amount in

dead-reckoning together (DR+Causality), and a scheme which each experimental run, we stored the positions of two cars

performs neither of the two types of control (the no-control
scheme; NC), In the four schemes, each player obtains the
positional information about the player’s car at regular in-
tervals (every 33 ms in our experimental system) and sends
the information with its timestamp, which is the genera-
tion time of the information, as a computer data media unit
(MU) [1], [10] to the other player.

In DR at each terminal (or player)’ , the current position
of the other player’s car is predicted by the past received
(transmitted) MUs. For simplicity, we use the first-order
prediction [5]. In the first-order prediction, we calculate
the predicted position by using the information about the
position included in the last received (transmitted) MU and
about the velocity calculated with the positional informa-
tion included in the latest two received (transmitted) MUs.
Then, we compare the predicted position with the actual
position. If the difference between the predicted position
and the actual position (i.e., the prediction error) is larger
than a threshold value T}y, the information about the ac-

T We use the words ‘terminal’ and ‘player’ interchangeably here.

in files every 33 ms. Two players who have almost the
same skill'Tt drove the two cars along a racing course (see
Fig. 4 (b)) for 30 seconds in the case of no network delay
and no delay jitter. In the experiment, car 1 (2) is moved
according to the stored file at terminal 1 (2). Terminal 1 (2)
transmits MUs each of which includes the position of car 1
(2) to terminal 2 (1). When the terminal receives an MU,
it updates the position of the car by using the positional
information in the MU.

In the experiment, the values of A in Causality and DR+
Causality are set to 100 ms [9] ¥ Those of Ty, in DR and

Tt Using the Network Time Protocol (NTP) [8], we can adjust the clock
ticks to each other within a few milliseconds.
1 The reason why we use the two players with almost the same skill
is that we make the positional relation of the two cars (that is, which car
is ahead of the other car) switch frequently. In the experiment, the posi-
tional relation of the two cars switches ten times. If the skills of the two
players are largely different from each other, the more skillful player’s car
is largely ahead of the other player’s one. In this case, the network delay
does not influence the positional relation of the two cars as in Fig. 2 (b).

¥ In [9], it is shown that delays within around 100 ms are subjectively

allowable in a networked racing game.
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Fig. 4. Displayed images of the networked racing game.

DR+ Causality are set to 0.25, where the width of each car
is 1.

We show configuration of the experimental system in
Fig. 5. The experimental system consists of the two ter-
minals (CPU: Pentium4 2.4 GHz, OS: WindowsXP Home
Edition, RAM: 512 Mbytes, Graphic board: GeForce4 MX
420) and a network emulator (NIST Net [7]). The two
terminals are connected to NIST Net via Ethernet cables
(100BASE-T). NIST Net generates an additional delay for
each MU according to the Pareto-normal distribution [7].
In the experiment, the average and the standard deviation
of the additional delay from terminal 2 to terminal 1 are set
to 75 ms and 10 ms, respectively. Those from terminal 1 to
terminal 2 are changed.

5. Experimental results

We show the inconsistency rate of the positional rela-
tions of the two cars as a function of the average additional
delay from terminal 1 to terminal 2 in Fig. 6. We also plot
the average difference in the positional errors between the
two cars versus the average additional delay in Fig. 7. In

Positional information

Terminal 1 «esesreasenssmssassmnsnssnannnns » Terminal 2

Fig. 5. Configuration of the experimental system.
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Fig. 6. Inconsistencyrate of the positional relations of the two cars versus
the average additional delay.

the figures, we show experimental results when the stan-
dard deviation of the additional delay is 10 ms or 30 ms.
We do not handle the cases in which the standard deviation
of the additional delay is greater than the average additional
delay in the figures.

In Fig. 6, we see that the inconsistency rate of NC be-
comes larger linearly as the average additional delay in-
creases. The reason is that the positional error of car 1 or 2
becomes larger in this case. From Fig. 6, we also find that
the inconsistency rate of Causality is equal to zero when
the average additional delay is less than around 100 ms;
thus, the consistency of positional relations of cars is re-
tained. However, when the average additional delay ex-
ceeds around 100 ms, the inconsistency rate of Causality
jumps up. This is because that the number of MUs which
are discarded owing to missing their time limits increases
largely since the average additional delay from terminal 1
to terminal 2 exceeds 100 ms (= A). In the figure, we no-
tice that the inconsistency rates of DR and DR+Causality
are almost constant independently of the average additional
delay. The reason is that even when an MU arrives late, we
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Fig. 7. Average difference in the positional errors between the two cars
versus the average additional delay.

can output the predicted MU by the prediction. Further-
more, in the two schemes, the predicted position of each
car was not largely different from the actual position. In
Fig. 6, the inconsistency rate of DR+Causality is smaller
than that of DR. In addition, when the average additional
delay is larger than around 100 ms, DR+Causality has the
smallest inconsistency rate among all the schemes. This
is because DR+Causality can compensate for larger addi-
tional delay jitters by buffering MUs for A seconds. Hence,
DR-+Causality can predict the position of the car more pre-
cisely than DR.

Then, we note in Fig. 6 that the inconsistency rates of
NC, DR, and DR+Causality are hardly dependent on the
standard deviation of the additional delay. However, when
the average additional delay is 125 ms, the inconsistency
rate of Causality at the standard deviation of 30 ms is smaller
than that of 10 ms. The reason is that the number of MUs
which arrive within their time limits increases as the stan-
dard deviation becomes larger.

In Fig. 7, we can see that the average difference in the
positional errors of NC changes from negative into positive
when the average additional delay exceeds 75 ms. The rea-
son is as follows. Since the average additional delay from
terminal 2 to terminal 1 is set to 75 ms, the positional error
of the car 1 is smaller than that of car 2 when the average
additional delay from terminal 1 to terminal 2 is smaller
than 75 ms. However, the positional error of the car 1 be-
comes larger than that of the car 2 when the average addi-
tional delay exceeds 75 ms. We also observe in Fig. 7 that
the average difference in the positional errors of Causality
suddenly jumps up when the average additional delay ex-
ceeds 100 ms. This is because that as described in the case
of Fig. 6, the number of discarded MUs increases largely
at terminal 2 since the MUs do not arrive until their time
limits. The figure also reveals that the average differences
of DR and DR+Causality are almost zero. Therefore, the
fairness among players is almost perfectly maintained in
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the two schemes.

From the above considerations, we can say that a scheme
which carries out the A-causality control and dead-reckoning
together can retain the consistency and fairness among play-
ers in better condition than the other three schemes even
when the network delay becomes larger.

6. Conclusions

In this paper, we discussed the consistency and fairness
among players for networked racing games. By exper-
iment, we made a performance comparison among four

schemes: The A-causality scheme, the dead-reckoning scheme,

a scheme which carries out the A-causality control and
dead-reckoning together, and a scheme which performs nei-
ther of the two types of control. As a result, we found that
the scheme which carries out the A-causality control and
dead-reckoning together can keep the consistency and fair-
ness among players in good condition.

As the next step of our research, we need to investigate
the influence of packet loss on the consistency and fairness.
Also, we will make a performance comparison between the
client-server model and the peer-to-peer model as in [10].
Furthermore, we plan to investigate the performance in the
case where there exist a number of players by simulation.
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