
   

 

Dynamic Shared State Management 
For Distributed Interactive Virtual Environment 

 
Youndong Park*, Jinwook Kim*, Heedong Ko*, Yoonchul Choy** 

 
Korea Institute of Science & Technology* 

{youndong, jinook, ko}@imrc.kist.re.kr 
 

Yonsei University** 
ycchoy@rainbow.yonsei.ac.kr 

 
 
Abstract 
 
Building an interactive virtual environment may 

involve diverse modules for performing various tasks 
like handling a group of interaction devices, multi-
modal/ multi-cluster rendering displays as well multi-
purpose simulations.  This requires a fine-grained 
sharing of inter-module states.  Previously, this fine-
grained control can only be achieved through hardware 
subsystems within a single computer.  With advancement 
of network technology, it is becoming possible to 
achieve fine-grained control over a cluster of computers 
that are closely connected, hence, an interactive virtual 
environment with multiple modules distributed across a 
local-area network.   
Distributed Interactive Virtual Environment (DIVE) 

may involve distributed modules as well as distributed 
virtual environments that are shared across a group of 
user participants.  In either case, the goal of DIVE is 
user’s perception of interacting with a single virtual 
environment system; this is made possible through 
sharing dynamically changing state information across 
distributed objects and events.  Depending on update 
rate and synchronization requirements of the 
dynamically changing shared states, the system requires 
from fine-grain to coarse-grain control over the shared 
states. In this paper, we introduce effective approaches 
to dynamically shared state management (DSSM) across 
the spectrum of control requirements by DIVE. 
 

Key words: Dynamic Shared States, Responsive Cyber 
Space, Distributed Interactive Virtual Environment 
 
1. Introduction 

 
In order to make the cyberspace responsive to its 

surrounding environment, the virtual environment must 
take input from various sensors distributed in the 
physical environment where the user resides and 

provide a course of action in response to sensed input 
interactively.  In order to handle a wide variety of input 
sources and to generate more realistic responses, a 
distributed interactive virtual environment (DIVE) 
framework was developed to handle network attached 
interaction devices as well as various sensors in real 
time.  DIVE framework can support multi-channel 
display environment for immersive virtual environment.  
A node is defined as a collection of networked 
computers and interaction devices as a unit of 
interaction space that is controlled by a single user.  The 
node may consist of distributed modules that are hosted 
by difference computers as a cluster. 
The same framework was extended to handle 

networked virtual environments where participants may 
come from different nodes in the wide-area network.   
Each node should keep the virtual environment 
consistent with each other so that each participant may 
create an illusion of sharing the common virtual 
environment together in time and space [2]. 

DIVE framework involves a fine-grained control of 
dynamic shared states among multiple modules in a 
single node as well as a coarse-grained control of 
dynamic shared states among participating nodes.  In 
this paper, we propose an architecture and software 
platform for sharing dynamic states in DIVE for a 
responsive cyberspace (RCS). 
 

2. Requirements in Distributed Virtual Environment 
 

Since we build a DIVE system based on network, the 
key consideration of our approach is how to make sure 
that the participant hosts or the participant of distributed 
interactive systems keep consistent with the view of the 
dynamic shared state such as a position and a velocity of 
object in virtual environment.  

 
In this paper, we classify dynamic shared state 

management as follows. 



   

 
1. Between components in the same node: Fig 1 (a) 
2. Between hosts in coarse-grain networked virtual 

environment (net-VE) such as a clustered virtual 
environment (clustered-VE) system which consist 
of multiple hosts on LAN: Fig 1 (b) 

3. Between net-VE systems in fine-grain network 
such as World Wide Web: Fig 1 (c) 

 
DIVE system should share user interaction state to 

responsive cyber space and also render the 3D virtual 
space to multiple display environments. We will briefly 
discuss the other issues such as multiple displays, 
scenario scripting, and so on, for DIVE.  

 
(a) 

 
(b) 

 
(c) 

Figure 1 Sharing dynamic shared state; (a) Sharing between 
components in a stand-alone VE system (b) Sharing between 
nodes of coarse-grained networked-VE system such as CAVE-
Like system [3] using PC-cluster (c) Sharing between coarse-
grained networked-VE systems on fine-grained network such 
as WAN. 
 
3. Related Works 
 

OpenGL Performer is probable the most performance-
oriented high-level 3D graphics rendering toolkit for the 
SGI IRIX, Linux, and MS Windows platforms. It is 
commercially available from SGI. It has been designed 
to take all advantage of the system resources to achieve 
the best possible frame rate and real-time performance. 
OpenGL Performer is at its best in visual simulations 
and virtual reality applications. But it does not include 
the facilities to DIVE and for user interactions. And it 
provides a minority device such keyboard, mouse, 
joystick and trackball.  
 
VR Juggler[4] is one of the first attempts to create a 

comprehensive software platform for the development 
and the usage of VR applications. It is a very promising 
the open source research and development project 
founded and lead by the VR Juggler group at Iowa State 
University. It provides both a development with C++ 
API and a reconfigurable run-time environment as like 
NAVERLib[1] library at KIST.  
 
Avango is a VR development environment created at 

FhG-IMK (Fraunhofer Institute for Media 
Communication). Avango greatly extends OpenGL 
Performer’s scene graph objects to allow for multi-
sensory VR application development. It has a scripting 
language (Scheme) such as Scenario Scripting 
Component in NAVERLib, which allows for rapid 
prototyping of applications. The main goal of that is to 
integrate the wide variety of VR devices user at FhG-
IMK and to be highly extensible. 
 
4. Dynamic Shared State Management for 
Distributed Interactive Virtual Environment 
 
4.1 Introduce to NAVERLib 
 
NAVERLib is a microkernel architecture framework 

in DIVE and an object-oriented modular system. It 
provides component modules for a variety of 
interactions, interfaces, and virtual contents that can be 
composed in the VR environment. The entire 
component modules can be written by using XML based 
on NAVERLIB scripting language.  
 
4.2 Sharing Dynamic State among Components such 
as Devices, Physics Simulation, and Visualization  
 
A VR environment system consists of multiple 

components, such as: device management components, 
display components for visualization, sound 
components, and etc. Hence, it needs to share dynamic 
state between each component. 
EventManager, which is implemented in NAVERLib, 

is a component for dispatching dynamic state values 
between components. Using EventManager, a user can 
describe XML scripts to dispatch dynamic state values 



   

or execute handler functions. The user can specify the 
bounding conditions and simple transformation rules.  
XML script for EventManager describes routers which 

consist of source, destination or handler. A router is a 
path for dispatching values in every rendering frame. 
The router should have a source of the dynamic state 
value. A router may have a destination of the dynamic 
state value dispatching path or a handler function which 
will be called if the source value satisfies its condition.  
 
4.3 Sharing Dynamic Shared States in Coarse-
Grained Networked Virtual Environment 
 
KAVE (Kist cAVE-like system) is common system 

which is based on coarse-grained networked virtual 
environment as shown in Figure 2. 
In each node of KAVE system, some components work 

as a server in a common server-client model. A server 
component updates and propagates dynamic shared 
state. If the component, which works as a server, is in 
an active mode, it change the values of dynamic shared 
state and will propagate them to the client components 
which are located on the other nodes as shown in Figure 
3 (Blue line).  
If the component is a passive server, it will receive 

dynamic state from the other system in networks, which 
may use different structure, and propagate them to the 
clients as shown in Figure 3 (Red lines).  
The other component is a client. It receives dynamic 

shared state from the server and reflects the data using 
EventManager to the other components in the same 
node (4.2).  
 

 
Figure 2 Example of Constitution of Components in KAVE 
 

 
Fig. 3 Example of KAVE using NAVERLib; Red-Line: 
dataflow of haptic device state (passive mode), Blue-Line: 
dataflow of physics simulation state (active mode) 
 
Every component in DIVE may have its own update 

rate. For example, the update rate for input and output 
data of the peripheral device is 60Hz, it means this 
device will receive and send the data 60 times in a 
second, physics simulation component may have 
different update rate to make the sense more real, for 
example 1KHz. In order to support various update 
rates, dynamic shared state is implemented using multi-
threading and multi-processing. Clustered-VE software 
should provide various facilities such as a capability of 
choosing synchronous or asynchronous responses and 
minimizing locking overhead. It also contains shared 
resources that are manipulated by multiple threads 
concurrently in general. 
To overcome those problems, the components in this 

system are implemented using design patterns such as 
wrapped facade pattern (It encapsulates the functions 
and data which are provided by existing non-object-
oriented APIs, for example thread functions, within 
more concise, robust, maintainable, and cohesive 
object-oriented class interfaces.), component 
configuration pattern (It allows an application to link 
and unlink its component implementations at run-time 
without modifying, recompiling, or statically re-linking 
the application), and so on [5]. 
 
4.4 Sharing Dynamic Shared States in Fine-Grained 
Networked Virtual Environment 
 

Typically, DIVE systems should be considered a 
multiple user interactions between fine-grained 
networked virtual environment systems. For example, a 
user may interact in a virtual world using a 
force/feedback device, which vibrates when collision 
occurs. The other user, who is located in the other 
place, can share context of the virtual environment. 
That context must be illusion on the other virtual 



   

environment system. We design software architecture 
for sharing between heterogeneous systems. The server 
component which works in an active mode receives an 
input data from force-feedback device and propagates 
them to the client component or the other server 
component which works as passive mode in the other 
systems.  

 

 
Figure 4 Sharing Dynamic Shared States in Fine-Grained 
Networked Virtual Environment 

 
In Figure 6, the system A handles the transmission of 

dynamic shared state to and from the System B, which 
is based on asynchronous message passing. The physics 
simulation component is an active server for 
modification and propagation in system A. The haptic 
component in system A, allows the physics simulation 
to send a dynamic shared state including an action in 
order to control scene-graph. Then, the physics 
simulation in system B will receive a dynamic shared 
state and manipulate to virtual object in scene-graph of 
system B. 

 
This architecture will enhance to overall performance 

of communication in fine-grained networked VE system 
and it allows each system to minimize the structure 
modification in each system. This framework makes the 
system extensible, reconfigurable and scalable. 
Therefore, the systems in fine-grained network can 
extend new functions or interfaces by simply defining 
dynamic share state without modifying the Kernel. The 
specification of dynamic shared state is specified in the 
script file and it can be easily modified to adapt with the 
scenario of VR contents.  
 
4.5 Other Issues in Distributed Virtual Environment 
 
Visualization is a basic facility in VE. Typically, 

Loader component with visual rendering in VR system 
constructs scene-graphs with nodes by reading an XML 
script. The objects which are created by modeling tools 
are loaded to compose a "World".  Loader component 
loads the objects and compose the world hierarchically. 

This is a different way of constructing a world with 
various objects. The user does not need to 
modify/recompile the source code to construct a 
different world. In order to create a new scene-graph, 
the user only needs to change the XML script, not the 
source code of the program, and execute it immediately 
to see the result. In that way, the programmer can save 
a lot of time in developing VR applications.  
Scenario scripting provides a way to control the stories 

in virtual environment which consist of multiple worlds 
and avatars. By employing various scenarios, the virtual 
world environment may be able to provide various 
contents to users.  
Multiple displays can connected to multiple PCs to 

make clustered-VE systems such as KAVE system or a 
large surrounded projection screen with stereo for a 3D 
rendering. The displays in clustered-VE system 
consisted of one master and the other slaves. Each 
display host has its own hostname, IP address, and port 
number. All the computers which are connected to the 
cluster have the same port number. Display Manager, 
which is implemented as a component in NAVERLib, 
identifies the PCs in the cluster by their hostnames in 
the XML script. View offsets should be set up to be 
suitable for the visual clustering environment on the 
PCs. For the above example, although the master 
computer, node A, has no offset, the other two slave 
computers' heading offsets are 30 and -30 degrees 
respectively.  
Device manager component is a component for 

communication with peripheral devices. It may support 
input and output devices in DIVE. There are five types 
of device that can be support by Device manager 
component such as: analog, button, dial, tracker, and 
force device. Using this component, the user can define 
the device that will be used. 
Physics simulation component is a component to 

simulate the Newton's physics law. Using this 
component, users can give natural dynamic behaviors to 
virtual objects in the world. The objects will be 
governed by the gravity, move under external forces 
and collide each other. Physics simulation component is 
implemented using Virtual Physics library. It 
automatically constructs the physics world from scene 
graphs loaded by Loader component. 
 
5. Implemented System based on NAVERLib 
 
5.1 Context-based Interactive System with 
Distributed Interactions between Heterogeneous 
Platforms: GIST 
 
We have implemented context-based virtual heritage 

system based on fine-grained networked VE [6][7] as 
shown in Figure 5(a). The virtual system enables users 
to remotely explore cultural heritage instead of taking a 
long trip to Kyongju, the real site for cultural heritage 
of Shilla dynasty. This system allows a guide to steer 



   

user groups in virtual heritage according to scenario 
describing tour schedule. A guide is able to change the 
scene by his gestures such as movements of arms or 
legs, and space sensor senses guide’s activities through 
3D camera and generates guide’s context. The guide 
service generates commands for movement in virtual 
heritage by analyzing the guide’s context. Users can 
explore virtual heritage with their own PDA which 
provides user’s profile containing identity, age, sex, and 
vernacular to context-based services such as language-
adapted user interface and heritage-information service. 
User groups in distributed virtual systems are 
synchronized by sharing contexts that represent changes 
at remote nodes. Although the virtual heritage of each 
user group runs on heterogeneous system, it can be 
efficiently synchronized with others as shown in Figure 
5(b). 

 
(a) 

 
(b) 

Figure 5 Context-based Interactive System with Distributed 
Interactions between Heterogeneous Platforms; (a) Context-
based virtual heritage system (b) synchronization among 
distributed interactive virtual system 
 
5.2 Physics Simulation in KAVE 
 
We implement the physics simulation system in a 

KAVE system by using NAVERLib with the sharing 
dynamic state in coarse-grained network.  
The KAVE consists of three wall screens, a floor 

screen (each screen is a square with size 2.2m), four 
CRT Projectors which display a stereoscopic image to 
the screens, a haptic device (SPIDAR), a tracker device 
(ISense900), and a 5.1 channel sound system. The 
system can provide a sense of reality by displaying 
auditory and physics simulation. User can observe, 
touch and manipulate the virtual objects as shown in 
Figure 6. 
 

 
Figure 6 Example of sharing dynamic shared state in KAVE 
using NAVERLib  
 
6. Conclusion and Discussion 
 
Each component in DIVE system makes it possible to 

encapsulate complicated procedures of functions into a 
simpler mechanism, to introduce modularity, to improve 
managing dynamic shared state between components, 
between hosts in coarse-grained networked, and 
between VE systems in fine-grained networked virtual 
environment. It eventually enhances the overall 
performance also.  
Using this mechanism, the responses from 

asynchronous and synchronous operations can be 
processed efficiently. The distributed interactive virtual 
environment system developer can easily implement 
state sharing mechanism, not only for a rendering 
component but also for various components, such as 
sound management, physics simulation and input/output 
of peripheral devices. 

Finally, the design and the implementation of this 
dynamic shared state management provide several 
advantages. First, the system developers can easily and 
effectively constitute a DIVE. Second, the participants 
can experience in RCS with enlarged display using 
multiple projections, a various devices for user 
interactions, a physic simulation, 3D surround sound, 
and so on. 

In the future, we should improve the way for sharing 
dynamic state between RCS and consider another type 
of dynamic shared state such as audio/video streaming 
data. We also will consider about sharing dynamic state 
issues with each virtual environment system. 
 
Acknowledgements 
 
This reported work was sponsored by Korea Institute 

of Science and Technology (KIST) fund under Tangible 
Space Initiative (TSI) Project. 
 
References 
 
[1] A Software Architecture for Extensible, Flexible 
and Scaleable Networked Virtual Environments by C.H 
Park, Ph.D. Thesis Korea University, 2002 



   

[2] Networked Virtual Environments by Sandeep 
Singhal, Michael Zyda, Addison Wesly, 1999 
[3] Projection-based Virtual Reality : The CAVE and its 
Applications to Computational Science by Carolina 
Cruz-Neira, Ph.D. Thesis, University of Illinois at 
Chicago, 1995 
[4] A Virtual Platform for Virtual Reality Application 
Development by Allen Bierbaum, VR Juggler, MS 
Thesis, Iowa State University, 2000 
[5] Pattern-Oriented Software Architecture Volume 2. 
Pattern for Concurrent and Networked Objects by 
Douglas Schmidt, Michael Stal, Hans Rohnert, Frank 
Buschmann, Wiley, 1999 
[6] CIVE: Context-based Interactive System for 
Distributed Virtual Environment by Seiie Jang, Youngho 
Lee and Woontack Woo, GIST U-VR Lab, 2004 
[7] NAVER: Networked and Augmented Virtual 
Environment aRchitecture; design and implementation 
of VR framework for Gyeongju VR Theater by C.H 
Park, H.D Ko, T. Kim, Computers & Graphics 27 
(2003) 223–230 


