

A Study of Service Ontology for Service Search

in Ubiquitous Environment

JeJeJeJe----Min Kim*, YoungMin Kim*, YoungMin Kim*, YoungMin Kim*, Young----Tack ParkTack ParkTack ParkTack Park

*Dept of Computer Science, Soongsil University
kimjemins@hotmail.com, park@Computing.ssu.ac.kr

Abstract

Now, computing is moving toward ubiquitous
computing environments. Form of context is different
each ubiquitous service system to handle it. In
ubiquitous environment, it happens frequently context
change between systems. So, all system must have
parsers that properly change form of context. Ontology
is supposed to ease shared understanding about
contexts between different systems. Add to this, OWL-
S will enable users and software agents to automatically
discover, invoke, compose, and monitor web resources
offering services, under specified constraints.

Ubiquitous service ontologies based on OWL-S are
supposed to automatically discover, invoke, compose,
and monitor device to provide ubiquitous service. In
this paper, we propose ubiquitous service ontologies to
define service that device offer in ubiquitous
environment. The idea comes from using ubiquitous
service ontology in model ubiquitous device service.
Ubiquitous service ontologies can be used in ubiquitous
service system to facilitate service device discovering
and service device execution and service device
composition.

Key words: Semantic Contexts, Ontology, OWL-S

1. Introduction

Ubiquitous computing environments consist of a large
number of autonomous service systems that work
together to transform physical spaces into smart and
interactive environments. In order for an service system
to function effectively in these environments, they need
to perform two kinds of tasks – they need to sense and
reason about the current context of the environment;
and they need to interact smoothly with other service
system [1].

The role of context has recently gained great
importance in the field of ubiquitous computing.
“Context” is any information about the circumstances,
objects, or conditions by which a user is surrounded
that is considered relevant to the interaction between

the user and the ubiquitous computing environment
[2]. Ubiquitous Computing environments are
characterized by many sensors that can sense a variety
of different contexts. The type of context include
physical contexts (like location. time), environmental
contexts (weather. light and sound level), informational
contexts (stock quotes, spots scores), personal contexts
(health, mood, schedule, activity), social contexts (group
activity, social relation, other people in a room),
application contexts (email received, website visited)
and system contexts (network traffic, status of printers)
[3]. Ubiquitous service systems execute suitable service
to user through context awareness and context
reasoning.

Form of context is different each ubiquitous service
system to handle it. In ubiquitous environment, it
happens frequently context change between systems.
So, all system must have parsers that properly change
form of context. To share knowledge between humans
and software agent, ontology is model to be
standardization and to have express. Indeed, service
systems share context through context ontology in
ubiquitous computing system.(Figure 1)

Figure 1: Ubiquitous service systems based on context ontology

The OWL language is a Semantic Web language
standard backed by the W3C. As oppose to the use of

Ubiquitous
Service

System A

Ubiquitous
Service

System B

Ubiquitous
Service

System C

Ubiquitous
Service

System D

Ubiquitous
Service

System E

Ubiquitous
Service

System F

Context
Information

Context
Information

Context
Information

Context
Information

Context
Information

Context
Information

 Upper ontology

Person spatial
time Devic

Environ

Ontology Reference

other knowledge representation scheme, the OWL
language is more suitable for expressing information
that is to be exchanged and shared by service systems in
ubiquitous computing environment. And it has rich
expressive power for defining complex ontology, and it
has standard language syntaxes for computer systems
to process and manipulate represented information.

There is CoBrA (Context Broker Architecture) of
UMBC that is research to share context through
ontology. But constructed CoBrA ontology only defines
words to express context of objects. Therefore, Service
systems did not recognize service that various devices
provide, condition and result to execute service though
this ontology in ubiquitous computing environment.
For example, there is service - “if an owner entered in
the room and temperature is more than 30°C, then air
conditioner operates.” CoBrA dose not recognize service
that air conditioner provides (cooling service), condition
(owner, temperature) and result to operate air
conditioner. CoBrA makes use of rule based system to
solve this problem. Indeed, if inputted contexts and rule
condition coincide (contexts that an owner entered in
the room and temperature is more than 30°C), CoBrA
execute service to operate air conditioner. But, rules are
bulky in ubiquitous computing environment.

Therefore, in this paper, we propose ubiquitous service
ontologies to define service that device offer in
ubiquitous environment. The idea comes from using
ubiquitous service ontology in model ubiquitous device
service. Ubiquitous service ontologies can be used in
ubiquitous service system to facilitate service device
discovering and service device execution and service
device composition.

In this paper, we have identified several features. These
are (1) standardization of contexts that various
ubiquitous service systems handle - Enable semantic
interoperability between different ubiquitous service
systems. (2) In ubiquitous environment, define services
that various devices provide - Enable automatic device
discovery. (3) In ubiquitous environment, define service
conditions and service results - Enable automatic device
composition. (4) In ubiquitous environment, define
situation information of device - Enable automatic
device execution monitoring.

In the rest of the paper, we describe method to share
context between ubiquitous service systems and to
recognize service that devices offer in ubiquitous
computing environment. In section 2, we present OWL
to describe ontology and OWL-S that is service
ontology to construct by OWL. In section 3, we
describe the shortcomings and structure of CoBrA
which is developed in UMBC. In section 4, we present
ubiquitous service ontology. In section 5, we state our
conclusions.

2. Related Works

2.1 The Web Ontology Language OWL

The OWL language is a Semantic Web language for use
by computer applications that need to process the
content of information instead of just presenting
information to humans [6]. This language is developed
in part of the Semantic Web initiatives sponsored by the
World Wide Web Consortium (W3C).

The current human-centered web is largely encoded in
HTML, which focuses largely on how text and images
would be rendered for human viewing. Over the past
few years we have seen a rapid increase in the use of
XML as an alternative encoding, one that is intended
primarily for machine processing. The machine which
process XML documents can be the end consumers of
the information, or they can be used to transform the
information into a form appropriate for human
understands.

As a representation language, XML provides essentially
a mechanism to declare and use simple data structures,
and thus it leaves much to be desired as a language for
expressing complex knowledge. Enhancements to the
basic XML, such as XML Schemas, address some of the
shortcomings, but still do not result in an adequate
language for representing and reasoning about the kind
of knowledge essential to realizing the Semantic Web
vision.

OWL is a knowledge representation language for
defining and instantiating ontologies. An ontology is a
formal explicit description of concepts in a domain of
discourse (or classes), properties of each class describing
various features and attributes of the class, and
restrictions on properties [7].

The normative OWL exchange syntax is RDF/XML.
Ontologies expressed in OWL are usually placed on
web servers as web documents, which can be referenced
by other ontologies and downloaded by applications
that use ontologies.

 In this paper, we described context ontology to share
contexts between ubiquitous service systems through
CoBrA project to construct context ontology based on
OWL. The CoBrA ontology for enabling knowledge
sharing and ontology reasoning based on OWL
language. These ontologies play an important role in
CoBrA, helping the context broker to share contextual
knowledge with other agents and enabling it to reason
about context.

2.2 OWL-S: Semantic Markup for Web Services

OWL-S is an ontology, within the OWL-based
framework of the Semantic Web, for describing Web
service. It will enable users and software agents to
automatically discover, invoke, compose, and monitor
web resources offering services, under specified
constraints. OWL-S is including its subontologies for
profiles, processes, and groundings. The ontology is
still evolving, and making connections to other
development efforts, such as those building ontologies

of time and resources.

The service profile tells ``what the service does''; that is,
it gives the types of information needed by a service-
seeking agent or system to determine whether the
service meets its needs. In addition to representing the
capabilities of a service, the profile can be used to
express the needs of the service-seeking agent.

The service model tells ``how the service works''; that
is, it describes what happens when the service is carried
out. For nontrivial services (those composed of several
steps over time), this description may be used by a
service-seeking agent in at least four different ways: to
perform a more in-depth analysis of whether the service
meets its needs; (2) to compose service descriptions
from multiple services to perform a specific task; (3)
during the course of the service enactment, to
coordinate the activities of the different participants;
and (4) to monitor the execution of the service.

The service grounding specifies the details of how an
agent can access a service. Typically a grounding will
specify a communication protocol, message formats, and
other service-specific details such as port numbers used
in contacting the service.

In this paper, to use feature of OWL-S, we proposed
ubiquitous service ontology to automatically discover,
invoke, compose, and monitor services that every
devices provide in ubiquitous environment. Indeed, to
execute correct service in situation, ubiquitous service
system (1) discover devices to provide suitable service,
(2) operate devices to satisfy input condition(input,
precondition) by user, (3) compound services to provide
various devices by service planner and execute suitable
service to user.

If a rule based system handle these processes,
ubiquitous service system have bulky rules to discover,
execute, compound service. If there are service
ontologies to provide service definition, service
execution-condition, service result, service systems
execute efficient ubiquitous service.

3. CoBrA Ontology

CoBrA is a broker-centric agent architecture for
supporting context-aware systems in smart spaces [8].
Central to the architecture is the presence of a Context
Broker, an intelligent agent that runs on a resource-rich
stationary computer in the space. It’s responsible for
acquiring and maintaining context knowledge,
reasoning about the information that cannot be directly
acquired from sensors (e.g., intentions, roles, temporal
and spatial relations), detecting and resolving
inconsistent knowledge that is stored in the shared
model of context.

Harry Chen et al [9] uses the CoBrA ontology for
enabling knowledge sharing and ontology reasoning

based on OWL language. These Ontologies play an
important role in CoBrA, helping the context broker to
share contextual knowledge with other agents and
enabling it to reason about context. CoBrAONT is a
collection of ontologies expressed in the Web Ontology
Language OWL for describing information in an
intelligent meeting room environment.

The CoBrA ontologies can be used in CoBrA to
facilitate knowledge sharing and ontology reasoning.
The following use case describes typical uses of
ontologies in CoBrA:

Figure 2: The structure layout of CoBrA ontologies for intelligent
meeting room. Ontologies are expressed using the OWL-DL subset
of the OWL language.

A sensor agent detects the presence of a Bluetooth-
enabled cell phone in Room 210. It composes a
description of this sensed event using COBRA-ONT,
which then is sent to the context broker in the
associated space. Without having any evidence to the
contrary, the broker asserts that the owner the device is
also in present in Room 210. Based on a physical
location ontology predefined in COBRA-ONT, knowing
Room 210 is a part of the Computer Science Building
which in turn is a part of the UMBC campus, the
context broker concludes the device owner is in school
today.

But constructed CoBrA ontology only defines words to
express context of objects. Therefore, Service systems
did not recognize service that various devices provide,
condition and result to execute service though this
ontology in ubiquitous computing environment. To
solve these shortcomings, ubiquitous service systems
need to ubiquitous service ontology to describe service
that devices provide, input-condition to use service,
service

CoBrA
ontology

Actions
ontology

Device
ontology

Agent
ontology

Meeting
ontology

Space ontology Time ontology

Document
ontology

Action.owl
Adjustlighting.owl
Bookroom.owl
Loadpresentation.owl
Participatemeeting.owl

Device.owl
Personal-device.owl

Agent.owl
Foaf-basic.owl
Role.owl
Fifa-agent.owl
Academia.owl

Meeting.owl
Demo-session.owl

Space-basic.owl
Place.owl
Location.owl
Rcc-basic.owl
UMBC.owl
UMBC-ite.owl
UMBC-ecs.owl

Time-basic.owl
calendarclock.owl

Document.owl
Image-doc.owl
Photograph.owl
Powerpoint.owl

result. In section 4, we explain this ubiquitous service
ontology.

4. Ubiquitous Service Ontologies

In this paper, we proposed ubiquitous service ontology
that based OWL-S. Ubiquitous service ontologies can
be used in ubiquitous service system to facilitate service
device discovering and service device execution and
service device composition. The following use case
describes typical uses of ubiquitous service ontologies:

In the summer, Mr. Kim arrived at home. Current
temperature is 30°C. Mr. Kim’s room installed the air
conditioner and the electric fan. In situation, ubiquitous
service system must to discover devices-information to
provide cooling service through ubiquitous service
yellow page. Then ubiquitous service system discovers
information of the air conditioner and the electric fan.
And, it decides service devices by used to service input-
information and service precondition to need service
execution. Indeed, ubiquitous service system discovers
air condition and electric fan to provide cooling service.
Input information and precondition of an air condition
are userID, powerON, in_room(?person), (<=
(?currentTem 30)). But Input information and
precondition of an electric fan are userID, powerON,
in_room(?person), (<=(?currentTem 28)). Ubiquitous
service system operates an air condition because current
temperature is 30°C.

Ubiquitous service ontologies consist of two distinctive
related set of ontologies: Ubiquitous service core and
ubiquitous service extension. The set of Ubiquitous
service core ontologies attempts to define generic

ubiquitous device services that are universal for
different pervasive computing applications in ubiquitous
environment. The set of ubiquitous service extension
ontologies, extended from the core ontologies, define
additional concepts for supporting specific types of
devices. Figure 3 shows a diagram of the ubiquitous
service ontologies and their associated relations.

4.1 Ubiquitous Service Ontology Core

This set of ontologies consists of ‘Ubiquitous service
profile’, ‘Ubiquitous service process,’ and ‘Ubiquitous
service grounding’. The Ubiquitous service profile tells
``what the service does this device provides?''; that is, it
gives the types of information needed by a ubiquitous
service-seeking agent. The Ubiquitous service process
tells “how the service provides”; that is, it describes
what happens when the ubiquitous service is carried out.
The Ubiquitous service grounding specifies the details
of how an agent can access a ubiquitous service. In this
paper, we described the ubiquitous service ontology, the
ubiquitous service profile ontology, the ubiquitous
service process ontology.

Figure 4 shows ubiquitous service based on service
ontology. Service ontologies only describe overall class,
property to execute service, to compound service, to
discover service. To execute suitable device by
ubiquitous service system, information (provided
service, input information to execute device, service
output, service precondition) of every device should be
made service instance file. Service instance built by
service provider (service manager, service coordinator)
though service upper ontology.

Figure 4: Ubiquitous service based on service ontology

4.1.1 Ubiquitous service ontology

The class “Ubiquitous Device_Service” provides an
organizational point of reference for declaring services
that every device provide. One instance of Ubiquitous
Device_Service will exist for each distinct published
service. The properties presents, describedBy, and
supports are properties of Ubiquitous Device_Service.
The classes “Ubiquitous Device_Profile”, “Ubiquitous
Device_Process”, and “Ubiquitous Device_Grounding”
are the respective ranges of those properties. Each
instance of Ubiquitous Device_Service will present a
descendant class of Ubiquitous Device_Profile, be
describedBy a descendant class of Ubiquitous
Device_Process, and support a descendant class of
Ubiquitous Device_Grounding.

Figure 5: Top level of the service instance

Therefore, structuring of the ontology of ubiquitous
service is motivated by the need to provide three
essential types of knowledge about a ubiquitous service
(shown in figure 5). The following shows a ubiquitous

service ontology description of an air conditioner
service agent. The OWL-s class ‘service:Service’ is
define to represent a set of all device to provide service
in ubiquitous environment. A service class can be
described by a set of properties, which include basic
profile information (Profile_AirConditionAgent),
process information (AirConditionAgent_process),
grounding information
(Grounding_AirConditionAgent).

4.1.2 Ubiquitous service profile ontology

Ubiquitous service profile ontology gives the types of
information needed by a service-seeking agent.
Ubiquitous service profile does not mandate any
representation of services to provide by devices, but it
mandates the basic information to link any instance of
ubiquitous service profile with an instance of ubiquitous
service. Ubiquitous service profile consists of two set of
properties. First, a ubiquitous service profile instance
may have at most one service name and text description,
but as many items of device information. Second, the
ubiquitous service profile represents two aspects of the
functionality of the ubiquitous service: the context
transformation (represented by contextInputs and
context Outputs) and the state of ubiquitous
environment change produced by the execution of the
service (represented by servicePreconditions and

Ubiquitous
Device Service

Ubiquitous
Device Process

Ubiquitous
Device Groundi

Ubiquitous
Device Profile

presents describedBy support

AirCondition
Agent

I

AirCondition
Agent process

I

Grounding_
AirConditionAge

I

Profile_
AirConditionAge

I

presents describedBy support

Air Conditioner Service

<?xml version='1.0' encoding='ISO-8859-1'?>
<!DOCTYPE uridef[
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">
 <!ENTITY owl "http://www.w3.org/2002/07/owl">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema">
 <!ENTITY service "http://www.daml.org/services/owl-

s/1.1B/Service.owl">
 <!ENTITY air_profile "http://ailab.ssu.ac.kr/JeMIn/owl-

s/AirCondition_Profile.owl">
 <!ENTITY air_process "http://ailab.ssu.ac.kr/JeMIn/owl-s/
 AirCondition_Process.owl">
 <!ENTITY air_grounding "http://ailab.ssu.ac.kr/JeMIn/owl-s/
 AirCondition_Grounding.owl">
 <!ENTITY DEFAULT "http://ailab.ssu.ac.kr/JeMIn/owl-

s/AirCondition_Service.owl">
]>
…
…
<owl:Ontology rdf:about="">
 <owl:versionInfo>
 $Id: AirCondition_Service.owl,v 1.10 2004/10/10 05:37:25

Kim, Je-Min $
 </owl:versionInfo>
 <rdfs:comment>
 This ontology represents the OWL-S service description for the
 Air Conditioner service example.
 </rdfs:comment>
 <owl:imports rdf:resource="&service;" />
 <owl:imports rdf:resource="&air_profile;" />
 <owl:imports rdf:resource="&air_process;" />
 <owl:imports rdf:resource="&air_grounding;" />
 </owl:Ontology>
<service:Service rdf:ID=“AirCondition_ServiceAgent">
 <service:presents

rdf:resource="&air_profile;#Profile_AirConditionAgent"/>
 <service:describedBy

rdf:resource="&air_process;#AirConditionAgent_Process"/>
 <service:supports

rdf:resource="&air_grounding;#Grounding_AirConditionAgent"/>
 </service:Service>

serviceEffects). The following shows a ubiquitous
service profile ontology description of an air conditioner
service agent. The OWL-S class
‘newProfileHierarchy:AirConditioner’ is define to all air
conditioner to provide cooling service in ubiquitous
environment.

4.1.3 Ubiquitous service process ontology

Ubiquitous service processes consist of atomic service
processes and composite service processes. Atomic
service processes correspond to the actions a service can
perform by engaging it in a single interaction between
user and service systems. Atomic service processes have
no sub- processes and execute in a single step, as far as
the user is concerned. On the other hand, composite
service processes correspond to actions that require
multi-step. Composite service processes are
decomposable into other (atomic service process or
composite service process) processes. Their
decomposition can be specified by using control
constructs such as Sequence and If-Then-Else.

A ubiquitous service process can have any number of
contextInputs (including zero), representing the context
that is required for execute. It can have any number of
contextOutputs, the context that the service process
provides returns. There can be any number of
servicePreconditions, which must all hold in order for
the service process to be invoked. Finally, a ubiquitous
service process can have any number of seviceEffects.
contextOutputs and seviceEffects can depend on
serviceConditions that hold true of the state of

ubiquitous environment at the time the service process
is performed.

We use the term ‘result’ to refer to a coupled
contextOutput and serviceEffect. Having declared a
result, a ubiquitous service process can then describe it
in terms of four properties. The subCondition property
specifies the condition under which this result (and not
another) occurs. The withContextOutput and
hasServiceEffect properties then state what ensues when
the condition is true. The hasResultVar property
declares variables that are bound in the subCondition.
The following shows a process that provides cooling
service. Cooling service execute through if current
temperature is higher then criterion temperature.

<owl:Ontology rdf:about="">
 <owl:versionInfo>
 $Id: AirCondition_Profile.owl,v 1.0 2004/10/15 23:53:35 Kim, Je-Min
$
 </owl:versionInfo>
 …
</owl:Ontology>
<newProfileHierarchy:AirConditioner rdf:ID="
Profile_AirConditionAgent ">
 <service:presentedBy rdf:resource="&air_service;#

AirCondition_ServiceAgent "/>
 <profile:has_process rdf:resource="&air_process;#

AirConditionAgent_Process"/>

<profile:serviceName>AirCondition_ControlAgent</profile:serviceName>
 <profile:textDescription>
 This service control air conditioner based on the specification

of a request.
 </profile:textDescription>
 ...
<profile:serviceCategory>
 <newAddParam:Ubiq rdf:ID=“Ubiquitous service category">
 <profile:value>
 Air Conditioner Control Service
 </profile:value>
 <profile:code> 561599 </profile:code>
 </newAddParam:Ubiq>
 </profile:serviceCategory>
 …
 <profile:contextInput rdf:resource="&air_process;#userID"/>
 <profile:contextInput rdf:resource="&air_process;#switchON"/>
 <profile:contextOutput
rdf:resource="&air_process;#spout_ColdWind"/>
 <profile:hasResult rdf:resource="&air_process;#cold_Air"/>
 </newProfileHierarchy:AirConditioner>
</rdf:RDF>

<owl:Ontology rdf:about="">
 <owl:versionInfo>
 $Id: AirCondition_Process.owl,v 1.0 2004/10/15 00:14:57 Kim,Je-Min
$
 </owl:versionInfo>
 …
 </owl:Ontology>
<process:CompositeProcess rdf:ID= “air conditioner Process">
 <process:composedOf>
 <process:If-Then-Else>
 <process:ifCondition>
 …
 <expr:SWRL-Condition>
 <expr:expressionBody rdf:parseType="Literal">
 <swrlx:Variable rdf:ID="X1"/>
 <swrlx:IndividualPropertyAtom>
 <swrlx:propertyPredicate
rdf:resource="#UserVerification"/>
 <swrlx:argument1 rdf:resource="#X1"/>
 </swrlx:IndividualPropertyAtom>
 </expr:expressionBody>
 </expr:SWRL-Condition>
 …
 </process:ifCondition>
 <process:then>
 <process:Perform>
 <process:process

rdf:resource="#Air_conditioner_Operation_process"/>
 </process:Perform>
 </process:then>
 </process:If-Then-Else>
 </process:composedOf>
</process:CompositeProcess>

4.2 Ubiquitous Service Ontology Extension

Ubiquitous service ontology extension are defined with
a propose: define a set of concepts for supporting
specific service types in ubiquitous environment. At
present, ubiquitous service ontology extension consists
of experimental service ontologies for supporting
ubiquitous service system: light service, screen service,
sound service, and temperature service. Due to space
limitation, in this section, we briefly describe the
existing ubiquitous service ontology extention.

UbiquitousDevice_ServiceHierarchy - This ontology
provides a basic ontology of services to support the
ubiquitous service examples for light service, screen
service, sound service, and temperature service (shown
in figure 6). It provides a example of how such an
ubiquitous service ontology can be built and how it
interacts with the ubiquitous service profile to define
ubiquitous services.

Figure 6: structure of the UbiquitousDevice_ServiceHierarchy

UbiquitousDevice_ServiceConcepts - These concepts
could be defined locally, but typically they should
correspond to known concepts within public service
ontologies to allow for general access and usage without
prior knowledge of the light service, screen service,
sound service, and temperature service.

UbiquitousDevice_ServiceSpace – This ontology
defined space to execution ubiquitous service. At
present, UbiquitousDevice_ServiceSpace include
bedroom, living room, dining room, powder room,
office. There is a more substantive space ontology file,
but it draws on very large geography ontology. We will
reintroduce the more substantive space ontology file.

UbiquitousDevice_ServiceActor - This ontology adds
the range element to the deviceInformation property as
defined in the ubiquitous service profile. The class
deviceActor contains details about the individual device
that offers a service: deviceName, installSpace,
providService, productNumber,
manufacturingCompany, ipAddress.

UbiquitousDevice_ServiceExpression –
Preconditions and effects are represented as logical
formulas. An instance of this ontology represents a
particular logical formalism, such as KIF, SWRL, or
DRS.

5. Conclusions and future works

We proposed ontology to define service that device offer
in ubiquitous environment and to define parameter to
use service. There is CoBrA (Context Broker
Architecture) of UMBC that is research to share context
through ontology. But constructed CoBrA ontology
only defines words to express context of objects.
Therefore, service systems did not recognize service
that various devices provide, condition and result to
execute service though this ontology in ubiquitous

<process:AtomicProcess rdf:ID=" Air_conditioner_Operation_process ">
 <process:contextInput/>
 <process:ContextInput rdf:ID=“userID"/>
 </process:contextInput>
 <process:contextInput/>
 <process:ConTextInput rdf:ID=“switchON"/>
 </process:contextInput>
 <process:contextOutput/>
 <process:ContextOutput rdf:ID=" spout_ColdWind"/>
 </process:contextOutput>
 <process:hasResult>
 <process:Result>
 <process:hasResultVar>
 <process:ResultVar rdf:ID="CurrentTemp">
 <process:parameterType

rdf:resource="&temp;#Temperature"/>
 </process:ResultVar>
 </process:hasResultVar>
 <process:subCondition expressionLanguage="&expr;#KIF"
 rdf:dataType="&xsd;#string">
 (and (current_Temp ?CurrentTemp)
 (>= ?CurrentTemp ?criterionTemp))
 </process:subCondition>
 <process:hasServiceEffect expressionLanguage="&expr;#KIF"
 rdf:dataType="&xsd;#string">
 (decrease ?CurrentTemp)
 </process:hasServiceEffect>
 </process:Result>
 </process:hasResult>
</process:AtomicProcess>

Ubiquitous
Device_Profile

Ubiquitous
Service

Light Service Screen Service Sound Service Temperature
Service

…

Service
Element

hasServiceElement

Light Screen Sound Temperature …

 hasControl ON

 hasControl ON hasControl ON

 hasControl ON

<owl:Ontology rdf:about="">
 <owl:versionInfo>
 $Id: NewConcepts.owl,v 1.0 2004/10/15 01:17:35 Kim,Je-Min $
 </owl:versionInfo>
 <rdfs:comment>
 DAML-S Coalition: NewConcepts used by Ubiquitous Service
Example
 for OWL-S Process Model
 </rdfs:comment>
 </owl:Ontology>
<owl:Class rdf:ID="userID">
 </owl:Class>
 <owl:Class rdf:ID="switchON">
 </owl:Class>
 <owl:Class rdf:ID=" switchOFF">
 </owl:Class>
 <owl:Class rdf:ID=" spout_ColdWind ">
 </owl:Class>
 <owl:Class rdf:ID=“Bright">
 </owl:Class>
 <owl:Class rdf:ID=“Dark">
 </owl:Class>
 <owl:Class rdf:ID=“ScreenON">
 </owl:Class>
 <owl:Class rdf:ID=“ScreenOFF">
 </owl:Class>
…

computing environment. So, to use feature of OWL-S,
we suggested ubiquitous service ontology to
automatically discover, invoke, compose, and monitor
services that every devices provide in ubiquitous
environment. Ubiquitous service ontologies can be used
in ubiquitous service system to facilitate service device
discovering and service device execution and service
device composition. Ubiquitous service ontologies
consist of two distinctive related set of ontologies:
Ubiquitous service Core and Ubiquitous service
Extension. The most important ontologies are
ubiquitous service core in ubiquitous service ontologies.
Ubiquitous service core consist of ubiquitous service
profile, ubiquitous service process, ubiquitous service
grounding. In this paper, we described the ubiquitous
service ontology, the ubiquitous service profile
ontology, the ubiquitous service process ontology.

References

[1] Anand Ranganathan, Roy H. Campbell, “A
Middleware for Context-Aware Agents in Ubiquitous
Computing Environments”, In ACM/IFIP/USENIX
International Middleware Conference, 2004, Rio de
Janeiro, Brazil, June 16-20, 2004
[2] Dey, A.K., et al. “A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications”, anchor article of a special
issue on Context-Aware Computing, Human-Computer
Interaction(HCI) Journal, Vol.16,2001
 [3] Korkea-aho, M. “Context-Aware Applications
survey”,
http://www.hut.fi/~mkorkeaa/doc/context-aware.html
[4] Harry Chen, Tim Finin, Anupam Joshi. “An
Intelligent Broker for Context-Aware Systems”,
Adjunct Proceedings of Ubicomp 2003, Seattle,
Washington, USA, October 2003
[5] “OWL-S: Semantic Markup for Web Service”,
http://www.daml.org/service
[6] D. L. McGuinness and F. van Harmelen. OWL
Web Ontology Language Overview. In Proposed
Recommendation(PR) for OWL. Web Ontology Working
Group, W3C, 2003.
[7] N. F. Noy and D. L. McGuinness. Ontology
development101: A guide to creating your first
ontology. Technical Report KSL-01-05, Stanford
Knowledge Systems Laboratory, 2001.
[8] H. Chen, T. Finin, and A. Joshi. A context broker
for building smart meeting rooms. In Proceedings of the
Knowledge Representation and Ontology for Autonomous
Systems Symposium, 2004 AAAI Spring Symposium. AAAI,
March 2004.
[9] Harry Chen AND Tim Finin AND Anupam Joshi.
“An Ontology for Context-Aware Pervasive Computing
Environments.” In Workshop on Ontologies and
Distributed Systems, August 2003.
[10] Harry Chen, Filip Perich, Tim Finin, “SOUPA:
Standard Ontology for Ubiquitous and Pervasive
Applications”, International Conference on Mobile and
Ubiquitous Systems: Networking and Services, August
22, 2004

