
VR Content Platform for Multi-Projection Displays
with Realtime Image Adjustment

Takafumi Koike Kei Utsugi Michio Oikawa
Systems Development Laboratory, Hitachi, Ltd.,

1099 Ohzenji, Asao, Kawasaki, Kanagawa, 215-0013, Japan
{koike,utsugi,oikawa}@sdl.hitachi.co.jp

Abstract

We propose a VR content platform for multi-projection dis-
plays. Our platform has in common features with frame
synchronization methods without any special hardware and
real-time image adjustment mechanism with graphics pro-
cessing units.
We realized the image adjustment mechanisms as image

effects. The image effects used multipass rendering, mul-
titexturing, and programmable shaders. Therefore we can
easily extend adjustment algorithms, and use multiple ef-
fects, and implemented several image filters.
In above features, we can reduce workflow to create con-

tent for multi-projection display. Because we can efficiently
operate post-productions for content for multi-projection
display. We used our system to create high-resolution movie
contents for seamless multi-projection display.

Keywords: Immersive Projection Technology (IPT),
Frame Synchronization, Graphics Processing Unit (GPU),
Realtime Image Adjustment, VR Content Creation

1. Introduction

Seamless multi-projection displays have been thoroughly
studied and applied to many products, as one of the Immer-
sive Projection Technologies (IPT). However, most of these
products have simple architectures, for example some prod-
ucts consist of one PC and three displays. Therefore, stud-
ies on more complex systems are now in progress. For ex-
ample, Yamasaki studied color and geometry adjustments
for the overlapped areas using complex screen shapes and
multi-projectors for immersive projection displays [12].
Additionally, special hardware is currently being stud-

ied for multi display systems. For the driver or library,
Humphreys studied WireGL([4]) as a scalable OepnGL sys-
tem on cluster PCs, and Chromium([5]) as a stream pro-
cessing framework for interactive graphics on cluster PCs.
For hardware, Stoll studied image reconstruction hardware
for multi-projection displays [11].
However, the GPU processing power surpassed that of

the CPU, and GPUs can execute most image-processing
operations much faster than CPUs, [6] and [7].
In these displays, it is difficult to create motion pictures

for immersive projection displays, because they have highly
specialized, high-resolution screens. For example, during
the editing of motion pictures, we have to execute fine color
correction adjustments, and so on. But, during the ad-
justment, we must go back to the beginning to do some
work, such as color correction (with tools such as Adobe r°

Photoshop r° or After Effects r°1 on PC), encoding, and pre-

1Adobe, Photoshop, and After Effects are the registered

view process in the actual displays. Chen studied scalable
and high-resolution tiled displays([2]) by MPEG video de-
livery, but to use specific CODEC(COder/DECorder) is not
suitable for VR contents creations. Because new codecs are
developed continually, for example Pixlet for Quicktime 7
or WMV HD for WMV9 are these new codecs, and we want
to choose codecs by creating contents.
To improve the workflow and solve these problems, we

developed a synchronous GPU system over a network. Ad-
ditionally, we applied the system to multi-projection dis-
plays to operate interactive and intuitive post-production
of high-resolution motion pictures in realtime.
In section two, we show previos works and problems of

past researches. In section threem we propose our archi-
tecture to rsolving some problems and show our experi-
ment system. In section four, we show experiments results.
Lastly, we conclude our research, and show future works.

2. Previous Work and Problems

2.1. Seamless Multi-Projection Displays

In our system, we used the techniques proposed by [12].
The system consisted of an equal number of PCs and pro-
jectors. Each PC generates and displays one image for one
projector. In addition, each PC is connected over LAN
(ex. 100/1000BASE-T), allowing us to realize fully scalable
seamless multi-projection display systems, without restric-
tions on the number of projectors.
The images from each projector have overlapped areas.

To realize seamless images, the test patterns were projected
and measured using digital still cameras, and we calculated
the correction data for seamless projections from the pho-
tos.
To correct images in realtime, we used specially de-

veloped image-processing boards. Each image-processing
board had an image input and an image output. To real-
ize seamless projection, these correction data were loaded
to our boards, and corrective measures were applied to the
input images.
After being geometrically transformed, the real-time ren-

dered images were projected onto a hemispherical screen
using six projectors, and the brightness and color were ad-
justed to produce one seamless image on the screen. The
transformation was executed on our proprietary image pro-
cessors.
It is not possible for this system to process image cor-

rections using a GPU, because our prototype GPU-based
image processing system runs at about 25 frames per sec-
ond only, without any other graphic processing in Radeon
9800. This is because the image processing of our seamless

trademarks of Adobe Systems Incorporated.

projection system processes geometry, color, and gamma
corrections for each pixel, which require a huge number of
texture lookups.

The hardware can process images in real time, but is not
programmable, and the parameters cannot be uploaded in
real time. Therefore, it is difficult to change the correction
data in real time.

2.2. Frame Synchronization Problem

For simplicity, we used only movie content in our research,
but we can easily extend this to real time VR content. In
our system, we choose a Direct Show Technologies on Mi-
crosoft Windows platform because it supports many codecs,
and we can play movies free from codecs. This enables us to
choose the most suitable format for the content, depending
on the circumstances. Additionally, developing codec is ex-
tremely difficult, and therefore impractical for our system.

We showed a movie profile (Figure 1) with a setting of
30 frames per seconds. The movie contained 2218 frames.
The X-axis represents the frame numbers of the movie, and
y-axis represents the interval time of the previous frame in
milliseconds. This graph shows that there is a lot of movie
playback jitter.

Figure 1: Movie profile

Next, a movie histogram is shown in Figure 2. The
X-axis represents the interval time of the previous frame
in milliseconds, and the y-axis represents the number of
frames during this interval. This verifies that almost all
frames were in time, and only a few frames were delayed.

Therefore, the above graphs indicate that the same start
time alone is not enough for seamless multi-projection. If
the movie requires camera panning, the difference in one
frame can be very noticeable.

On the other hand, the PC clocks were incorrect, be-
cause their crystal oscillators are inaccurate. Therefore, if
we use these systems for a long time, we need to stabilize
the time synchronous logic. To realize this, it would be
ideal to use special synchronization hardware, but too ex-
pensive. Therefore, we chose an approach that does not
require special hardware.

Figure 2: Movie histogram

2.3. Workflow of Contenet Creationfor Multi-
Projection displays

We considered how to create content for multi-projection
displays. Figure 3 shows the content creation workflow for
multi-projection displays.

Figure 3: Content creation workflow for multi-projection
display

At first, we created some content materials. For ex-
ample, we created pre-rendered CG, or a title image,
and so on. Some movies need fish-eye lenses, HD cam-
eras, or multi-cameras. Of course, the resolution of pre-
rendered CG is larger than that for one display. Our sys-
tem has a resolution of 2576×1350, which is larger than the
1080p(1920×1080) HD format.
Next, these materials were edited using video editing

tools, such as Adobe After Effects r° or Apple Fincl Cut
Pro r°. We assumed a spherical display to create content.
Usually, a flat panel display with a smaller resolution than
that of multi-projection displays is used to create content,
and its display forms are different from real environments
(in this case, we used a spherical display). In addition, to

realize seamless images, we must sacrifice color correctness
or brightness. Therefore, we cannot use the color-matching
processes usually used to verify the scene. Therefore more
previews and editing are needed.
Next, we must segment the contents. Segmentation is

an accepted operation for seamless multi-displays because,
to realize seamless images, they must be divided for each
projector with some overlapped areas.
Consequently, encoding is also critical to multi-display

systems, because very large image sizes do not allow movie
playback in realtime.
Lastly, we preview the content, and if any corrections are

needed, we must go back to edit the parts.

3. Methods

3.1. System Architecture

Figure 4 shows our proposed archtecture. We need at

Figure 4: System architecture

least two PCs, one is the controller PC and the other is
the display PC. One display PC is required for each dis-
play/projector, for example, we require three display PCs
if we have three display systems.
The controller PC has three blocks. The first one is a

controller block. The controller block treats the user inter-
face and controls the other display PCs. The second one is
a reference clock block. The reference clock block was used
to generate our system’s reference clock. If the movie has
sound data, this block uses it because sound is very sensi-
tive to speed playback differences. The reference clock has
millisecond resolution. The third one is the network server
block, which sends commands and the reference clock set-
tings to the display PCs. Almost all commands are sent
using TCP, but the reference clock is sent by UDP.
Display PCs have six blocks. The network client block

receives various data from the controller PC via UDP and
TCP, and sends appropriate data to the other blocks. The
movie manager block reads the compressed movie data from
local storage, and sends compressed movie data to a movie
decoder block, with a reference clock. The movie decoder
block decodes the compressed movie data and sends it to
the GPU’s texture memory. The effect manager block man-
ages the previously described effect files, and sends them to

the pixel or vertex shader of the GPU. The CG manager
treats the polygon data and textures, and sends them to
the vertex shader and texture memory, and, if needed, to
the pixel shader. The rendering block is the main engine
of the display PC, and it manages all the data from other
blocks and, using the reference clock, renders movies and
realtime CG.
To control the system, we prepared a GUI to operate

the content playback and realtime image adjustments. The
percentage and these adjustment parameters are broadcast
to the other PCs. In addition, we developed an effect time
line (ETL) format, based on XML, to record the effect time
lines operated by users with GUI.

3.2. Frame Synchronization

Our approach did not require special hardware; in other
words, we used only EthernetTM2. In addition, for sim-
plicity, we did not use any known quality of services (QoS)
technologies.
To realize stable synchronous play back, we must con-

sider two facts. First, we observed a frame difference. Sec-
ond, frame synchronization must be continued for many
hours. A long run time is required because movie editing is
time consuming. However, computer times can vary by a
few seconds a day. This means we need to synchronize the
clocks on each computer.
To do this, we developed the following four features:

1. Synchronization with reference clock
First, the control PC was connected to the other PCs
using TCP. The control codes for start and stop are
example by TCP. If all PCs are connected, the control
PC broadcasts its own times to the display PCs to
adjust them to 0 time.

2. Synchronization with sound data
We defined the time code of the sound files as the
reference clock. If the content had no sound data, we
used synthesized sound data, for example Null MIDI
files.

3. Autonomus clock
If PCs do not have a reference clock, all display PCs
run autonomously using their own clocks.

4. Synchronization by texture
In DirectShow technology, DirectShow plays movies
using their own clocks, and there are limitations on
synchronizing the clocks to the reference clock. To
resolve this problem, we first decompress the cached
movie data to the GPU’s texture memory; then, to
time the vertical sync signal, we controlled the frame
synchronizations. When restricted to movie content,
we used movie profile for synchronization, which pro-
file is playback length of each frames.

3.3. Theory of Realtime Image Effects

First, we defined the image effects as follows. We defined
position x in a space domain, and time t in a time domain.
We only considered the image effects of 2d space for sim-
plicity, but we can easily expand into 3d space. In 2d space,
position x is expressed as x = (x, y).

2Ethernet is a trademark of Xerox Corporation.

Now we can define the image processing filters to project
from p(x, t) to q(x, t).

q(x, t) = k−1d (x, t)

Z ∞
−∞

Z ∞
−∞

Z ∞
−∞
f(x0, t0,x, t)p(x0, t0)dx0dy0dt0

(1)
We defined kd(x, t) as a normalized parameter as follows:

kd(x, t) =

Z ∞
−∞

Z ∞
−∞

Z ∞
−∞
f(x0, t0,x, t)dx0dy0dt0 (2)

In this system, q(x, t) and p(x, t) usually had RGB pixels,
and these vectors had three components as follows:

q(x, t) = (R,G,B) (3)

Some image processing filters use the differentials be-
tween adjacent pixels. In this case, we could easily realize
these filters to treat f(x0, t0,x, t) as a diffrential operators.
In addition, calculations have finite integral intervals in

most cases, and because images are constructed using pix-
els, the calculations have discrete values, and the integrals
are described by sums. In addition, in most cases, a was
the small integer, and [t0 = t], [x0 = x− a, x+ a].
If the integral intervals were wide, the following is true.

q(x, t) = k−1d (x, t)×Z ∞
−∞

Z ∞
−∞

Z x+a

x−a
f(x0, t0,x, t)p(x0, t0)dx0dy0dt0

= k−1d (x, t)×Z ∞
−∞

Z ∞
−∞

Z x

x−a
f(x0, t0,x, t)p(x0, t0)dx0dy0dt0

+k−1d (x, t)×Z ∞
−∞

Z ∞
−∞

Z x+a

x

f(x0, t0,x, t)p(x0, t0)dx0dy0dt0

(4)

We divided the two sums, to verify that they could be ap-
plied using multiple-filters.

3.4. Implementation of Realtime Image Effects

Movie textures are used to realize realtime image adjust-
ments, and our system can play these movie textures syn-
chronously, using the same time code as the motion pic-
tures. A pixel shader was used to write the image process
functions, and all images were treated as textures and ren-
dered as square.
We added some adjustment functions, such as color

curves, hue adjustment, mosaics, sepia, reversal, and edge-
detect. Thus, editors can reuse these functions many times
using multipass and multi-texture rendering.
All functions were implemented using HLSL, which al-

lows us to easily add more functions.
For flexible movie playback, we used a Microsoft Win-

dows platform, and Direct Show technologies. We used a
VMR9, which rendered a D3D texture surface that could
easily be reused for other 3D applications.
To realize the previously defined image effects, we devel-

oped a design with following five features.

1. Time-Line Filter
In some types of filters, such as optical flow [1], we
need to calculate time integrals, and to do this we
used mutitexturing. We stored the frames in texture
memory, and integrated them by adding the stored
textures. If we store 1024×768 images in a 256-MB
graphics board, each frame needs 3 MB of memory
space. Therefore, the cards can store more than 80
frames.

2. Multiple Filter
As mentioned, we considered the filters as integrals
for space and time. We used a pixel shader to inte-
grate the functions. If the integral interval is local, it
could be calculated using texture lookups. However,
both the operation numbers of the pixel shader and the
number of texture lookups would be restricted. There-
fore, if the integral intervals are wide, they are difficult
to calculate. To avoid this problem, we developed a
multiple filter mechanism. As shown in equation (4),
we divided the integral intervals to fit the GPU hard-
ware restrictions and then calculated the integrals. To
realize multiple filters, we used textures as the cache
memory of the calculations. Using multipass render-
ing [3, 8], we enhanced the integral intervals,

3. Input from Ouside Data
The system needs input from outside data to compose
still images (ex. titles, background images). Moreover,
we need to generate text data to obtain text-based
mosaics or time consuming post-processes. To meet
this requirement, we prepared a mechanism to input
outside data as texture data.

4. Expansion of Shader Languages
To realize scalable architecture in this system, we used
high level shader languages (HLSL) in DirectX r°3 de-
veloped by Microsoft. We also expanded these lan-
guages to control the parameters. We defined the
denomination rules as parameters in our system, and
some names were used for handshakes between com-
puters, as described below.

5. User Interface
Some effects require not only applying or not applying
but also dynamically changing the parameters. An
example of such an effect is a tone curve (Figure 5).

3.5. Effects

We implemented 11 image filters to create effects for our
systems; 1) Luminance transition (fade in, fade out), 2)
Monochrome, 3) Sepia, 4) Mosaic, 5) Text based Mosaic
(ASCII art), 6) Forsen, 7) Posterization, 8) Color space
transition, 9) Fourier Translation, 10) Tone Curve, and 11)
Gaussian filter. All these filters were implemented using
a 2.0 pixel shader. However, it is possible to implement
the system using pixel shaders of 1.1 or less. Of course, all
filters run in realtime, and are applied to movies.
Next, we provide detailed descriptions of the image fil-

ters.

1. Luminace transition
We use luminance transition filters when we start or
stop movies, or transit scenes. Fade-in is a filter that

3DirectX is a registered trademark of Microsoft Corporation.

Figure 5: GUI for manipulating tone curve

gradually increases brightness, and fade-out is a filter
that gradually decreases brightness. The only filter
parameter is time.

2. Monochrome
Monochrome is a filter that converts color images to
monochrome images. The only filter computation is
luminance. Luminace(l) is calculated as follows.

l = 0.299× R+ 0.587×G+ 0.114× B

R and G and B are values of each color component.

3. Sepia
To realize a sepia filter, we first calculated the lumi-
nace of the images, such as the monochrome filter.
Very like monochrome effect, we used 1d texture to
realize.

4. Mosaic
The mosaic filter is the median of the squared areas.
For simplicity, we calculated the median using the up-
per left of the squares. The width and height are con-
trolable parameters. In spherical screens, we have to
coorect the mosaic forms.

Figure 6: Mosaic Filter

5. Text-based Mosaic
Figure 7 shows the results of text based mosaic filter.
First, we calculated the brightness, and allocated the
pre-computed text required by specific areas. The text
data are stored to 2D textures.

Figure 7: Text-based Mosaic Filters

Figure 8: Forsen Filter

6. Forsen Filter
Figure 8 shows the results of this effect. The Roberts
filter is known as a nonlinear differce filter which
has edge-detection fanction [10]. The Forsen filter is
known as a high-speed approximation of the Roberts
filter [9].

7. Posterizaiton
Posterization is a filter that converts the colors of each
pixels to colors within several threshold values.

Figure 9: Posterization Filter

8. Color Space
First, we changed the color from RGB to HSV (Hue,
Saturation, and Value) space. In HSV space, we ro-
tated the color, and we changed it from HSV to RGB.

9. Fourier Transform
Several image filters, such as low-pass or high-pass fil-
ters, operate in a frequency domain. For these image
filters, we implemented Fourier transform using fast
Fourier transforms (FFT)

10. Gaussian Filter
Gaussian filters scumble the images. Figure 10 shows
the results of this effect.

11. Tone Curve
The tone curve was the most effective filter used in this
research. We applied color curves to each component,
or all components with GUI (Figure 5). The color
curve format is compatible with the Adobe “.acv”
curve file, and we can import or export this format.
Photoshop r° can read and edit the formats.

Figure 10: Gaussian Filter

In our system, we implemented only a minimum number of
image filters, although the system has the architecture to
easily add filters. In addition, this system has the ability
to apply any of the filters in favorite order.

3.6. Workflow of proposed system

Figure 11 the proposed content creation workflow. This fig-

Figure 11: Content creation workflow for multi-projection
display

ure shows that editing might be required more than once,
even though segmentation and encoding is required only
once. Segmentation is particularly important for multi-
displays. These two operations are necessary for compu-
tations and not for the editors. Further, by reducing the
times we also reduce the costs. In this workflow, we tried
to edit and preview more than in the old workflow.

4. Experiments and Results

We performed three experiments: 1) We measured the ex-
tent of synchronization; 2) We measured the performance
of the multiple effects; and 3) We actually created a sam-
ple of the VR content, and checked the content creation
workflow.

4.1. System Description

Figure 12: Experiment system

Figure 12 shows the architecture of our seamless multi-
projection display system. The system consisted of 6
DLPTM4 projectors (1024×768 pixels) with front projection
and has a hemispherical screen (curvature radius =2.1m).
The viewing angle was 180 degrees. These projectors were
arranged in a 3×2 array with a resolution of 2576×1350
because there were some overlapped areas (about 20% of
each projector’s images were overlapped). Each projector
was connected to image processing hardware, whose sole
purpose was to realize a seamless image. Image processing
hardware had a video-input and a video-output connector
that supports DVI. Each hardware unit was connected to
a GPU, which was connected to the PC using an AGP
bus. The specifications of each PC were as follows (CPU:
Intel r° Pentium r° 45 2.8 GHz, Memory: 1 GByte, HDD:
160 GByte, GPU: pixel shader 2.0).
This system was comprised of 7 PCs, one of which was

the control PC and included a mouse, a keyboard, and a
GUI display. Six PCs were controlled with one control PC
over LAN (100BASE-T). In addition, the control PC could
treat the movie sound files.

4.2. Frame Synchronization Performance

To confirm frame synchronization between each display, we
used two methods: One was a physical eye check; and,
the other check was a comparison of images shot with a
DV camera. The movie that was used in experiments was
a time code movie in MPEG1 format with 30 fps. Fig-
ure 13 shows the results of the experiment. Each of the
four displays show the same frames. This proves that the
synchronization difference was within one frame. Using eye
checks alone, we could not confirm the synchronization dif-
ferences. In addition, if our proposed method was not used,
we confirmed the synchronization is unstable.

4.3. Performance of Multiple Effects

We performed 2 experiments to check the effects of the GPU
and of image the filters. In the first experiment the CPU
load showed no differences whether effects were applied or
not. In the next experiment, five to six effects were achieved
without frame drops and the CPU load did not increase.

4DLP is a trademark of Texas Instruments.
5Intel and Pentium are the registered trademarks of Intel Cor-

poration.

Figure 13: Results of Frame Synchronization(This photo
shows 4 of 6 displays)

The top of Figure 14 shows an original movie we created.
The bottom right of Figure 14 represents three filters; first
the forsen filter, next the monochrome filter, and last, the
tone curve filter was applied to the movie with 0 to 255,
and 255 to 0.

4.4. Creating Sample Conetent

Figure 14 shows results of our system. Our original motion
picture was rendered using a PC cluster that contained 20
CPUs over a period of about 4 days. The motion picture
was divided into 6 movies per projector. The top image
shows the original, the middle image was blued, and the
bottom image was edge-detected and the image reversed.
All the effects were controlled by users in real time, and all
adjustment effects ran 30 fps without frame drops.
In this system, we improved the workflow and reduced

the fine adjustment time for creating motion pictures using
multi-projector displays.

5. Discussion

Above results of frame synchronization performance shows
that software-based synchronizaiotn is sufficient. In multi-
projection displays, it costs us by number of displays, so
function replacements by software will decrease the costs of
systems. The realtime image adjustments will also decrease
the costs, and not only are image effects but also change
VR content creation workflow.
Described above, our other research shows GPU based

geometry and color correcntions for seamless multi-
projection run about 25fps, so if we reduce functions or
use future GPU, we will set up semless multi-projection
displays without any special hardware.
We think clusters of next game consoles (ex. Xbox

360TM6, PLAYSTATION r° 37) have good cost perfor-
mance, computation powers, and high-resolution image
outputs, so these will be best platforms for seamless multi-
projection displays.
In addition, these results suggest fully scalable systems

for number of displays are aviable. We need fully scal-
able systems to realize stereoscopic displays with multi-
viewpoint method. These autostereoscopic displays need
more displays than that of stereoscopic displays and sim-
ple displays. Therefore our proposed techniques are useful
for setting up large-scale stereoscopic displays with multi-
viewpoint method.

6Xbox 360 is the trademark of Microsoft Corp.
7PLAYSTATION is the registered trademark of Sony Com-

puter Entertainment Inc.

Figure 14: Image adjustment examples of this system

6. Conclusion and Future Work

We developed a VR content platform with multi-projection,
frame synchronization without special hardware, and real-
time image effects. The number of displays means that our
system is scalable, and the image effects mean that it is ex-
tensible. In addition, we reduced time required for content
creation and still obtained a high-resolution movie. There-
fore, we proved our approach is adequate for VR systems
with multi-projection displays. Our system also has an ef-
fective real-time image-processing feature.
In the future, because this system already has fade-in

and fade-out support, if we add a support for playing more
than one movie simultaneously, we can realize that most of
editing part can be operated on multi-display system itself.
This will allow us to create content efficiently.
Additionally, color changes can adapt the environment

to suit the program by dynamically changing the surround-
ing lighting. Usually, VR systems are located in special
places, such as laboratories and testing facilities. How-
ever, to spread multi-display systems throughout society,
we must support dynamic light changing. By detecting dy-
namic environment changes, such as room brightness, the

system can change gamma or hue accordingly.
Next, this system will allow people to use 3D objects

inside their computers, so they can easily apply real time
CG For example, time changes can be easily expressed using
tone curves, without any global illumination techniques.
Lastly, our system is suitable for camera array systems,

and by creating special effects, the system might be capable
of real time object recognition.

Acknowledgement

We would like to sincerely thank Takashi Ishijima for his
advice about implementing this system, and Masami Ya-
masaki, Tsuyoshi Minakawa and Hideyuki Sakai for setting
up the seamless multi-projection display.

References

[1] G. Adiv. Determining 3-d motion and structure from
optical flow generated by several moving objects. IEEE
Trans. Pattern Anal. Machine Intell., pages 384—401,
July 1985.

[2] Han Chen. “Scalable and Ultra-High Resolution
MPEG Video Delivery on Tiled Displays”. Techni-
cal Report TR-675-03, Princeton University Computer
Science Department, 2003.

[3] Paul J. Diefenbach and Norman I. Badler. Multi-
pass pipeline rendering: Realism for dynamic envi-
ronments. In Symposium on Interactive 3D Graphics,
pages 59—70, 1997.

[4] Greg Humphreys, Matthew Eldridge, Ian Buck, Gor-
don Stoll, Matthew Everett, and Pat Hanrahan.
“WireGL: A Scalable Graphics System for Clusters”.
In Proceedings of ACM SIGGRAPH 2001, pages 129—
140, 2001.

[5] Greg Humphreys, Mike Houston, Ren Ng, Ran-
dall Frank, Sean Ahern, Peter Kirchner, and Jim
Klosowski. “Chromium: A Stream-Processing Frame-
work for Interactive Rendering on Clusters”. ACM
Transactions on Graphics, 21(3):693—702, 2002.

[6] Jason L. Mitchell. Image processing with direct3d pixel
shaders. In Wolfgang Engel, editor, ShaderX: Vertex
and Pixel Shaders Tips and Tricks. Wordare, 2002.

[7] Jason L. Mitchell, Marwan Y. Ansari, and Evan
Hart. Advanced image processing with directx 9 pixel
shaders. In Wolfgang Engel, editor, ShaderX 2 -
Shader Tips and Tricks. Wordare, 2003.

[8] John S. Montrym, Daniel R. Baum, David L. Dignam,
and Christopher J. Migdal. Infinitereality: a real-time
graphics system. In SIGGRAPH ’97: Proceedings of
the 24th annual conference on Computer graphics and
interactive techniques, pages 293—302, New York, NY,
USA, 1997. ACM Press/Addison-Wesley Publishing
Co.

[9] W. K. Pratt. Digital Image Processing, pages 497 —
508. John Willey, 1991.

[10] L. G. Roberts. Machine perception of three - dimen-
sional solids. In J. T. Tippett et al., editor, Optical
and Electro — Optical Information Processing, pages
159—197. MIT Press, 1965.

[11] Gordon Stoll, Matthew Eldridge, Dan Patterson, Art
Webb, Steven Berman, Richard Levy, Chris Caywood,
Milton Taveira, Stephen Hunt, and Pat Hanrahan.
“Lightning-2: A High-Performance Display Subsystem
for PC Clusters”. In Proceedings of ACM SIGGRAPH
2001, pages 141—148, 2001.

[12] M. Yamasaki, T. Minakawa, H. Takeda, S. Hasegawa,
and M. Sato. “Technology for seamless multi-
projection onto a hybrid screen composed of differently
shaped surface elements”. In IPT 2002, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

