ICAs

December-5-8-Ghristehurch;:-New=Zealand:

Self-Aware Framework for Adaptive Augmented Reality
Eduardo E. Veas Kiyoshi Kiyokawa Haruo Takemura?

Graduate School of Information Science and Technology, Osaka University
Cybermedia Center, Osaka University

Abstract or middlewaresupporting different communication protocols and
scalability.
In the dynamic environments of UAR, software is expected to bevarious standard approaches provide support for distributed
modifiable to accommodate for new user needs, expectations, &istems [11] [2], and some frameworks and toolkits have been
changing environments. Reflective middleware provides, in a cBased on these approaches. These middlewares often offer com-
tain way, an open implementation and presents an efficient aliggnent models that support third party development, composition
native to deal with highly dynamic environments. The present &ind deployment, and the approaches to handle self-awareness are
ticle describes an implementation of Reflective Middleware basggided by each solution. However, these models are in general
on an object oriented metamodel and its application in the fidfered on top of the middleware platform. As highlighted by re-
of AR. Along the way, it introduces support services that detefearch in reflective middlewaré|[there are advantages to also
ministically apply to every component, even those yet to be engiploit component techniques and reflection within the middle-
neered. These services have been defined as Generic Servicegdhe Key among these advantages are the possibility to adapt to
process of creatingeneric servicess demonstrated with variouschanges in the environment, and to customize the options to fit into
examples, showing their advantages as regards to issues of g@ge range of devices. These advantages have been applied, in the
reduction and flexibility. presented proposal, to the creation of support services, defined as
. - . . generic services
I_(eywc_)rds. ublqwtous_ computing, augmented reality, _reflec- In the following, an infrastructure that provides a base layer for
tive middleware, dynamlc_ reconflgu_ratlon, self-aware arCh'te(:tufleevelopment of these changing environments is presented. Insight
metamodel, generic services, distributed systems on related work, and a brief description of the application of reflec-
tion in areas related to AR are provided in the following section.
1. Introduction In sectior_l three_ the reflective infrastructl_Jre serving as foundation
for generic services and self-awareness is presented. Example ser-

As already signaled by augmented reality, particularly wear-Vices c_reated on top of the metam_odel are introduced in section
able AR, is beginning to overlap with ubiquitous computing®ur- Finally examples and conclusions are presented.
Ubiquitous Augmented Reality is defined as the intersection of
these two fields. In his paper, Mac Williams further introduce
challenges for the development of applications for UAR. Thega Related Work
includeuncertainty given by the need for components with differ-
ent availability to interact in a changing context with incompleté distributed system should easily connect users to resources; it
knowledge of other componentd-definition of the expected sys- should hide the fact that resources are distributed across a net-
tem behavior, produced as a result of combining new and chamgrk; it should be open and it should be scalablgQ]. Different
ing technologies, users and specialists from a wide range of fieligproaches at distribution are useful in different situations. When
And performanceimposed by the interactive and immersive ndhe state of the distributed part is not needed in every host and the
ture of mixed reality applications. processing can be carried out by a single computer, remote invo-
As an example, consider a user A entering a room carrying leation can be used. There are situations when the state is needed
own computing devices. In the room, another user B engages iriragvery host, for example the graphic models are needed to ren-
architecturing prototype, using the demo application of sedfon der, then a replication approach can be used. There are situations
Meanwhile two other users, C and D, play an AR game of chesgien hybrid approaches are recommendable. Various standard
User A should receive notification of availability of other applicaapproaches provide support for distributed systems CORBR [
tions in her computing devices. She should also be able to engdgea RMI P]. These approaches often require careful planning
in collaborative activities, for example with user B, receiving suf the interfaces and how they will be used. Once the components
port to load any new components that might be required. Tthigve been properly designed, applications can be developed in dif-
example fits the definition of UAR[IH], and the room area canferent scenarios, always supported by the middleware’s services.
be defined as araugmented areaFurthermore, a user E shouldHowever, these standards not always provide services for all the
possibly be virtually navigating the city being constructed by useemmunication needs, for example JavaRMI does not support ac-
B, in a remote place, through a completely virtual interface, tHige or passive replication. Decisions on the way interfaces will be
would make the application demo an example ahixed area used can not be delayed.
where augmented and virtual interfaces mix. Finally, as user AUbiquitous Computing has raised the requirement for flexibility
leaves, she should be able to unload all unnecessary componémtie software infrastructure layer. Middleware solutions focused
and also take all those she found interesting enough. in this area propose extending distributed systems, making them
Our goal is the development of an unobtrusive architecture fmware of their structure. Early approaches were based on keeping
UAR. To provide for the above mentioned challenges, such a an- connection map between the components of the architecture
chitecture should include aedaptable structurdbased on aex- [18] [[13]. The OpenCOM project uses metamodels to describe the
tensible set of componentnd a common software infrastructure€onnections between components and the architecture of the given

solution [B]. OpenCOMV2 is expected to extend the middlewatbe above mentioned entities. It also includes a base interface
to provide a multilanguage support while RUNEZ &ttempts to (IMetaObj) for components that support the metamodel. A com-
extend the above ideas to embedded systems. Reflectivity isp@ment supporting the metamodel must, minimally, provide a way
gued to be “an efficient way to deal with highly dynamic envirorto retrieve an instance of thkClass interface, from which in-
ments, supporting the development of flexible and adaptive sgtances of the rest of the metamodel can be acquired. In general,
tems and applications/8]. These approaches are mainly focuseitlis only necessary to provide a handle to the function used to cre-
on reconfiguration problems. ate the instances of the required interfaces (IClass, IMethod, etc.).
In Virtual Reality area, approaches aiming at distributed vio facilitate such a task, macros that instantiate derived template
tual environments, have proposed mechanisms such as distribatasises are provided. Therefore, to export the metamodel for the
scenegraphs2fl] [[16] [[19]. Following the ideas behind designlass in Tabldll a declaration of the form in Tab@is used.
of scene-graph toolkits 28] among others), modular approaches,

intended for flexible virtual environment23] [[21] identified the :

need of a minimum reflective infrastructure, to at least recognfza——-c22 [etaclass

types in the mOdUIes. :cl lassl: IMet.aC: :ts ; - . :fe[alurlez: dD cT<: :/:[a;u;e**>
Given the variety of sensors, tracking, input and display deviq éil:fmfiiélg): Vet hod * ch?Zat Srz(siiz Feature *

it deals with, reconfiguration capabilities have been considef*set-attrsO: tatr » vget_creation(): |Greation *

by most efforts in Augmented Reality architectures. The Tinmitr— 0 [Feature ke MO e

toolkit [17] focuses on mobile outdoor AR, and uses a data driven, |—‘

pipelined architecture. Reconfiguration of the system relies on |Feature

reparsing stored objects to change runtime values. Studierstube His_method(): bool const

is built on top of Open Inventor; applications written as separate +is_attr(): bool const

modules are loaded dynamically into the runtime framework, de- Hocreal °”(}:\ bool_const

c_oupling ap_plication dgvelopment from system development. Be- [T l

sides, Studierstube relies on OpenTracker to accommodate tral At Mothod Croation

data and on a distributed scenegrafit] [for distribution. De- _ - — .

.) N . +get _val ue(): Val ue +exec(): Val ue +make_obj (): | MetaChj *
Ve'Oped with focus in UAR, Dwarf 4_] is based on the idea of +set _val ue(in val : Val ue) +set_arg(int, Val ue): void
distributed services. Each network node runs a service manalget_typeQ): !Mtadass * | |+get_arg(): Value
which keeps information about local services such as what a ser-
vice offers to others, its “abilities”, and what it requires to properly Figure 1:Base interfaces of the metamodel.
function, its “needs”. This structural information can be used to
reconfigure the system on the fly through a Petri net GUI, and can
be regarded as reflective information about the services, provid-
ing enough structural awareness to be able to change the software
structure at runtime. One difference in this approach is it does

Table 1:ARToolkit tracking class.

not provide enough reflective means to manipulate unknown in- C'aSS.AR“aCk

terfaces (other than supported by the middleware), thus lacking public:

support for Generic Service. On the other hand DWARF relies on ARtrack();

CORBA to realize distributed services and to handle communica- vitual "ARtrack(;
tions, adding the reflective information for reconfiguration. This void set_config_file(String file);
not only adds up to the layering of the system, but it also gives up String get_config_file();
advantages of using component based techniques and reflection void set_fitting_mode(int fm);
within the middleware platform. int get_fitting_mode();

void set_imageproc_mode(int ipm);

int get_imageproc_mode();

void add_marker(ARmarker * marker);
int load_pattern(String filename);

void detect_markers();

void select_optimal();

ARmarker * get_marker(String name);
void resolve_transform();

Our approach relies on a metamodel with structural and also
behavioral characteristics, which provides manipulation capabil-
ities in addition to structural information. Similar metamodels
have been supported by programming languages, particularly in-
terpreted languaged]| Python. However, they have seldom been
used to create generic services, like remote objects, and are often
provided as one more feature of the language. In Java RMI for ex-
ample, the designer is forced to inherit from particular interfaces,
that is to also plan whether objects should be remote invocable.
Such decisions of how a certain component would be used can b&he macros mimic a class declaration, and they could be ex-

deferred until deployment time or even runtime by relying on thescted from a header file by a preprocessor (i.e. idl compiler).
metamodel. However, it is not necessary for a certain component to use the
provided macros, or even the template classes, as long as it can
provide a function to create instances derived from the base meta-
3. Base architecture: metamodel model interfaces. It would be possible for some component to
provide its own implementation of these interfaces.
Self-aware architectures contain runtime information that allows The metamodel takes care of providing one uniform generic
them toreflectupon themselves and adapt to changes in the enwiterface, decoupling the interfaces of components from the needs
ronment. “A component implements one or mameerfacesthat of the various services that compose the framework (Fi@re
are imposed upon itld. Interfaces, in object oriented architec- This generic interface can be used not only to discriminate com-
ture, are described by classes whose features define their behgdeents by their type but also to obtain information about the at-
[15]. A class can contain creation features, attribute features aridutes a component uses, its “needs” or “receptaclesZjraiid
method features. [6] respectively. It also provides information about the interfaces a
The metamodel (Figure[l) provides abstract interfaces tagiven component implements, thus the “abilities” or “interfaces”,

4.1. Communication
Table 2:ARToolkit tracking metamodel. Co unicatio

EXPORT_CLASS (ARtrack) As stated at the beginning of the related work section, a distributed
ATTR(config_file, String, system must provide some form of transparency. For this and for
get ,set, String) flexibility reasons first remote procedure call, and later remote ob-
ATTR(fitting_mode, int, get, set, int) jects have been considered essential for distributed systems. They
ATTR(imageproc_mode, int, get,set, int) allow a developer to use an instance of an object (or a procedure)
METHODZ1(void,false, without knowing where it is being executed.
add_marker,ARmarker) Replication was introduced in the area of fault tolerant systems,
METHODA(int, true, but data replication has also proven useful for performance rea-
load_pattern, String) sons. A number of approaches to distribution in AR|[and VR
METHOD(void, false, detect_markers) [16] [21] have been based on replication of the scenegraph.
METHOD(void, false, select_optimal) CORBA compliant middleware provides access to these ser-
METHOD1(ARmarker, true, vices. In the following subsections the approaches taken by this
get_marker, String) architecture to the mentioned technologies will be outlined. Fi-
METHOD(void, false, resolve_transform) nally a possible interface to a CORBA infrastructure is introduced.
END_EXPORT(ARtrack)

4.1.1. Remote Objects

Remote object architectures take advantage of the separation be-
tween an interface and its implementation to place the interface in
one machine, and the implementation in another. A client makes
method calls on groxy, which only marshalsinvocations into
messages anghmarshalseply messages into result values. The
RENDERING implementation resides at a server machine, and provides the same
interface. An incoming invocation is first passed teeaver stub

or skeletorwhich unmarshalst, invokes the method, and returns
the result. Clienproxiesand servestubsmust be generated for
every interface that is expected to work remotely, which is an ob-
stacle if an component that was not designed for remote usage is
ﬁ ﬁ suddenly expected to move to a remote computer and work.

REPLICATION
REMOTE OBJECTS

PERSISTENCY SERVYICE

& INPUT SYSTEM

COMFIGURATION
TRACKING

P

PYTHOM SERVICE vIDEOQ FEED

The proposed architecture includes an interface that can act as
proxy of any component that supports the metamodel (Fi@re
l This generic proxycreates aemote invocationinstance with the
given arguments when iiavokemethod is called, it serializes it,

Figure 2:Metamodel decoupling application components from &' Passes it to the underlying infrastructure to be sent by what-
) r communication method is being used.

chitecture services. The framework services are shown darkerfe§
while the white blocks symbolize example components from thg

| METAMODEL

demo in Sectiord IRemote
peer: Url
obj_id: ID
also in above mentioned work. Furthermore, the IMethod intelf+i nvoke(feature: String, args: Val ue *,size:int): Value

face supports dynamic invocation of arbitrary methods. A method

instance can store references to arguments, and be executed when Figure 3:Generic proxyinterface.
necessary, thus providing a way to defer the execution of a call
from its preparation generically. It can be linked to different in-
stances of the class. A creation procedure is similar to a meth
but the result of its execution is the creation of a new instance Q
the class (it is a constructor). So each IClass (in the metamo

is like a factory for its instances. Instantiating the factory pattefiy,
[9] is then reduced to storing a collection of ICreation instancq%a
Attributes can also be set or their value obtained by using the ap-
propriate instance of the IAttribute interface.

On the server sideskeletonsare not needed. Aeneric server
gure [) keeps a list of id of thesharedcomponents. Upon
eption of an invocation, itnmarshalst into a remote invoca-
instance; then it retrieves the indicated component and from
e required IMethod interface; which is subsequently invoked,
Ily, the result is sent back to the client (Figuge At runtime,
object can bsharedjust by adding it to thgeneric servewith

the desired id.

INetObj

. . shares: Dict<ID, |MtaChj *>
4. Generic Services address: Ul
+share(id: 1D obj: I MetaChj *): void

. ' +unshare(id:1D): void
The interfaces defined in the previous section are sufficient to hal, gokup(id: 1D): 1 Mtacj * const

dle a component in a generic fashion. Through these interfaceq+nandi e_r enot e_i nvocat i on(r eq: Remot el nvocat i on*): Val ue
number of support services can be created that can be used byam
components, even components that have not yet been created. The
following subsections include examples of services already avail-
able with different levels of maturity in the proposed architecture.

Figure 4:Generic serveinterface.

——
SERVER . .
CLIENT o T 1SingleNetObj
INVOCATION() Name:Add i i i
—————— Args:10 || [\GET_METHOD() +handl e_renot e_i nvocati on(req: Renot el nvocati on*): Val ue
ID:0bj1 Target:Obj1 NVOCATION ZS
INVOKE() Name:Add L
|Args:10 | Target:Obj1

IRemote NVOCATION Name:Add IRemote

ANSWER() Bios:10 +i nvoke(feature: String, args: Value *,size:int): Value
Result:15 EXEC(Q i
| IMethod | A

Figure 5: The remote invocation process as implemented by th| IMimic
proposed architecture.

+invoke(feature: String, args: Value *,size:int): Value

+l ocal _i nvoke(feature: String, args: Val ue *,
size:int): Value

+renot e_i nvoke(feature: String, args: Val ue*,

This approach has the disadvantage thaigieeric proxycan sizerint): Value
not be used in a place where a local component is used (becay+handl e_renot e_i nvocat i on(r eq: Renot el nvocati on*): Val ue
they might not share the same interface) however it has the
vantage that a minimunmplementation is used, this could prove
useful when developing for resource restricted devices like PDAs Figure 6:Active replication interface.
or mobile phones. On the other hand, if what is cabéatic in-
vocation modeis required, wrappers can be generated by sim
ply inheriting both from the exported class, and g@neric proxy
and redefining the methods of the exported class to calhtrake replica: | Metatoj*
method of thegeneric proxyinstead. These wrappers could also|+sync(): void
be generated automatically. A similar approach for Java was pr|+j oi n(group: Url): void
sented by [10]. +l eave(): void
+i nvoke(feature: String, args: Val ue*, si ze:int): Value

IMirror

4.1.2. Replication Figure 7:Passive replication interface.

The discrimination betweepassiveand active replication gives
two replication models. In active replication adplicasexecute _ _
the same operations; while in the passive model, one replica éx.3. Interfacing with CORBA

ecutes the operations and then actualizes all others, dusgg-a As stated above, our approach does not require the generation of

F{]ErijorfIzzitllg):\?éet?e.eioarzgosrﬁgIri]ser?ézpuhsirr?gplpl)%as“sci)\?earpe)g:i?gt:iéﬁk [proxiesor server stubgor the remote invocation facilities to work.
- o : . " Jtwould be possible though, to generate a CORBA interface, keep-
One of the problems in replication is keeping replicas consigy the flexibility of our architecture. A reason for this could be
tent, of the above mentioned approaches some utilizeithedl 3¢ there are available ORBs which have proven scalable, and pro-
sync_hronousmodel B, in which replicas are collected by dy'.vide support for wide range of protocols. Our approach is aimed
namic groups that allow them all to observe the same communigas;miicity, and as such it may fail to support certain protocols.
tion in the same order. In this model, when a new regti@asthe \gjther has it been deployed widely enough to prove its scalability.
group the completetatemust be transmitted to it. __ Tocreate a generic CORBA interface that would not require to
The current architecture also bases its replication facilities danerateproxiesandserver stubdor all interfaces, it would suf-
the virtual synchronousnodel and uses a group communicatiofice to provide an interface for the above descrigederic proxy
toolkit for reliable multicast. An active l’epllcatlon faCI|Ity IS prO'The client side would still Only have ainvoke method, as also
vided by a single interface (Figu@), which derives frongeneric - the server side. On the client side, the invoke method would mar-
proxy and a singlegeneric servei(which manages only one ob-sha| the arguments as before, but send them through CORBA in-
ject, and does not have a share list). Method invocations are sgfation. On the server side, a server stub would calhtielle—
through the netWOrk, Wh||e a'[tl’ibute invocations are handled |mvocationmeth0d Of Wha’[was described abov@aﬂeric server
cally. Because the communications are received by all replicas inrhjs approach would also provide a minimum implementation
order, it is guaranteed that executing a remote invocation will kegpp remote objects, this time using CORBA middleware. It has
the replicas consistent. similar advantages and disadvantages with the above. However
On the other hand passive replication is supported by provithhas the advantage of using proven communication architecture.
ing a wrapper object (Figur&), the wrapper executes all meth-This also proves the flexibility of our proposal, as it can adapt
ods on its current object, and synchronizes the replicas whentdisising different models with a minimum impact on the already
methodsyncis executed. A variation, as implemented for the dismplemented components.
tributed scenegraph is to save incremental change information for
each method execution and then send only the changed parts to, t%e s . .
replicas. This variation is dependent on the replicated object, a‘h - Scripting: Interfacing with Python

thus cannot be implemented generically. In the following theinterpretedlanguage will also be referred as
An object replicated through passive replication requires a syxterna) and code in the interpreter asternal codewhile the

chronization mechanism, otherwise changes could take placgd@hpiledcode will be referred acal, and its language decal

two different replicas, and the synchronization step would leakguage without loss of generality.

the replicated object in an inconsistent state. A distributed lock-The expected functionality of a scripting interface includes the

ing approach could be implemented using the described media#iowing four goals:

nism of active replication, to guarantee synchronized access to the

replicas. 1. handling components from the interpreter.

2. creating new components in the interpreter based on the

X= . . .
ported ones. '?able 4: Wrapper to export World class written using the API, it

doesn't include the declaration of methods other than constructor
3. running scripts from the local code. and destructor. Neither does it show the declaration of the Py-
WorldType structure, for reasons of space.
4. handling components created in the interpreter from the localtypedef struct {
code. PyObject_HEAD
World *world;

The first two are generally referred to estensionswhile the } Pyworld;
last two are examples @imbedding
Interfacing with other languages is done using some kind @f/ * " DESUUCIOr ---rrmzzeromeermmeeeees *!
wrapper, which serves as glue between the local and external lap-Static void
guages. Wrappers must be registered with the external languag&yWorld_dealloc(Pyworld — « self){
These wrappers are responsible for receiving invocations from delete self->world; }
the external language, translating these invocations and exedut-* CONSIIUCHOT —-semsermeeemmeeemeeeee *l
ing them on the local language, and of returning appropriately foStatic PyObject * _
the external language. This applies to most interpreted language$y\Word_new(PyTypeObject «type, PyObject ~args,
however, in the following, the discussion will be restricted to ob} PyObject «kwds) {
ject oriented ones. PyObject = result = PyObject_New(PyWorld, type);
The focus is then what is needed for the wrapper to translate ~ resuft->world = new World;
between the two languages. There are different approaches to dre-_eturmn result, }
ating wrappers for external languages, (the following will be fo-
cused in Python). In general the languages provide an API which))
can be used to write extensiof®2]. A wrapper for a simple class ~ Table 5:Wrapper written to export World class with Boost.

(Table [B) using the API would look like Tablédl There are also #include<boost/Python.hpp>
libraries that provide automatitatic translation, and can gener- using namespace boost::Python;
ate glue code, although they are not completely unobtrusive (that BOOST_PYTHON_MODULE(hello)
means they require developers to write in a certain way)(see Ta- {

ble [5). However, the major disadvantage is that these libraries class_<World>("World")

can only make astatictranslation, that is if changes are made to -def("greet”, &World::greet)
the exported interfaces, code must be regenerated and recompiled. def("set”, &World::set);
This defeats the flexibility goal, since changes in a component now }

impose changes in the service, which no longegdseric The
idea of replacing an interpreter with a different is also unimagin-

able without generating code for every possible interpreter, justin Table 6:Generic Wrapper declaration.
case. typedef struct {
PyObject HEAD
| = reference to its Python class */
Table 3:A simple class that will be exported to Python. PyMetaClass «in_class;
class World{ CPtr<IMetaObj> obj;
public: } pyObj;

void set(std::string m){ msg=m;};
std::string greet(){return msg;};
std::string msg;

h

Regarding the third goal, trgeneric Python serviceins scripts
on behalf of the framework, and can decide whether the inter-
preter, or the framework should be initialized; this last is crucial,

In the proposed architecture, to achieve the first gagdrseric - as the framework interface could be loaded from the interpreter by
wrapperTable B, based on the metamodel interface has been cigeluding the shared library, in this case, the first object created
ated. It receives invocations from the external language, with irthegeneric Python servicand it must be aware of the need to
guments also in the external language, queries the metamodeitiiialize the basic infrastructure before running any commands.
the requested feature and either executes it with the given paramPhe last goal is to be able to invoke methods on instances cre-
eters if it is a method, or manipulates its values if it is an attributated by the external language from the compiled one. This is again
When returning objects which are themselves components, tiR@gsible through a proxy, and it is only possible to do it directly
must also be wrapped to pass them to the interpreter. The wragp#te interface being invoked has been defined in the local im-
accomplishes the task of translator between the framework andpimentation. For example if the instance, created in Python, is
external language. derived from an interface defined in C++, then it may be manip-

A generic Python servic¢Figure [B) manages the dynamicu|ated through this interface, if not it might only be manipulated
wrapping of components, the creation of instances, and their #gough a proxy.
struction,

The interpreter also requires to know about the expatesses 4
to be able to accomplish the second goal above. In the case
Python, the interpreter relies on reflection, by which all its class€snfiguration is possible by utilizing the interpreter. Through it,
are defined. Taking this into account, theneric Python service a component can be queried for its interfaces, and its attributes.
generates Python classes from the framework classestine Based on this information, and the information kept by various
This service also creates wrappers, as only it knows about gubsystems on the runtime components, it is possible to assign
counterparts of the local metamodel in the interpreted side. a different instance of the same interface to a given component.

.(%. Configuration

IPyServer the usage of a well-documented scene-toolkit. However, the pro-
posed approach lacks concurrency management facilities, which
must be added separately. A shortcoming of using an external

+exported_classes: Dict<String, PyCbject*>
+New(t ype: PyCbj ect *, ar gs: PyObj ect *, kwds: PyCbj ect*): PyQhj ect *

+Del et e(obj : PyMet aChj *): PyChj ect * toolkit, which does not support the proposed architecture, is that it
+wr ap(obj : | Met aChj *): PyChj ect * can not benefit from the rest of the services (i.e. scripting). Solu-
*ereate_class(bases: PyChj ect *, di ct: PyChj et *, tions to the last issue are under analysis.

name: PyObj ect*): PyQObj ect*
+del et e_cl ass(kl ass: PyMet adl ass*): void

+rai se(String:reason): PyChject* 5 2 Application |ay0Ut
+run_string_script(script:String): Value e
*run_file script(file:String): Value Users sit in front of a table, the playground table, which contains

+islnitialized(): bool

+ Pyt honMai n() : bool markers and cameras pointing to its surface, one camera for each

host is used. A special marker with a handle is used as an input
)] o device (the stick-marker, Figur). Interaction is gesture based,
Figure 8:Generic Python serviceterface. dependent on the motion of the stick-marker. Movements that trig-
ger actions include inclination of the marker by more than a given
angle, up movement of the marker and others. The markers are
There is a local naming service which provides directory-likeacked by ARToolkit. Users may change the position of the menu,
structure and manipulation for searching components by nameby moving the marker that symbolizes it, open it (by occluding it
This interface is very primitive; therefore a GUI based interfasgith the stick-marker) and select models from a comprehensive
with semi-automatic assistance is planned for future work. directory menu (Figur€l0). Once a model is on the stick-marker,
it may be dropped at any point on the table surface.

4.4. Serialization

One common usage for introspection has been serialization, the
capability to save an object state to a stream from which it can later
be recovered, be it at the same location, or at a remote one. Our ar-
chitecture also provides a serialization interface which works au-
tomatically for most components. However, if a developer is in
doubt, she may decide to implement the metreaigeandrestore

which will be used in such a case. These methods are passed an
instance of &tore which provides methods to store and restore
basic elements such a¥, float, bool,etc. and facilitates the task

of saving/restoring current state.

5. Examples: Reconfigurable city planning

An example application has been created, which allows two users
to select, place and manipulate objects in the frame of a city-

planning application. For this demo, extra infrastructure was re-

quired for distributed presentation. A distributed scenegraph was
created to fulfill this requirement. The distributed scenegraph ap-
proach is briefly introduced in the next subsection, followed by the

application layout.

5.1. Distributed scenegraph

As a test of the communication facilities, and with the goal of pro-
viding a distributed presentation facility in the framework, Coin3D
(Open Inventor implementation) was extended widistributed
node The architecture of Open Inventor allows receiving notifi-
cation on modification of a subtree, by placing its root in a sensor
node, based on the approach taken [g].[The distributed node
places itself into a sensor to receive notification of the changes in
its subtree. Furthermore, it uses tipassive replicatiofacilities Figure 10:Model selection menu on stick-marker
to relay the changes to remote replicas.

There are different ways to relay the changes. It can be doneConfiguration changes can be scheduled at any time by issuing
upon occurrence automatically, or by explicitly callingyachro- commands in a Python shell-like console.
nizemethod on the node. The second approach is desirable whefthe demo is pointed not really at using the application, but at
changes to the subtree occur in bursts, then the changes caseleing how it can be reconfigured on the fly. This is only an exam-
kept in a list, and sent all together. This reduces the transmnyge of possible uses for the described architecture. And although a
sion of small messages. Nevertheless, the delay produced indinglar demo could be created by using other approaches; creation
changes to the replicas must not be noticeable to the viewers. of software for a seemingly complex setup as this is greatly sim-

Among the advantages of this approach at distributed scengrafified by the proposed architecture, as the software components
are the possibility to compose a scenegraph from more than onemeast focus on their own task, and are required to solely support
mote scenegraphs (as this approach providetal sharing and the metamodel interface.

There are several ways one could divide the application. Tak-
ing into account layers relevant to AR systems, it can be divided

vertically and horizontally as in Figurdd The demo uses three
computers, two clients, and a server that manages the shared re-
sources, (shared scene).

= —
SCEME MGMT LA G S 4 —
3 (=) E 5-RENDERING 5-RENDERING
EM EMl R
INTERACTION e =M 3 INTERACTION 3INTERACTION
TRACKINE 1 2 E 2TRACKING 2-TRACKING
1-VIDEO FEED 1-VIDEQ FEED
WIDED FEED
Figure 13:Separate systems for each user leave the server to han-
Figure 11:Layering of the demo application. dle only shared parts.

With the exception of the shared scene management, the other

layers could be handled by any of the computers, client or sen/aéis not been included in the demo for lack of implementations of

that is depending on whether they have access to the underlygagvices to handle other interpreters.

layer. For exampletracking depends on theideo feedo recog-

nize the markers in the current frame. If a host has accesde¢o .

feed either local or through the network, it can handle trackin@.- Conclusions and future work

Horizontally, any host capable of doing its owackingcan han- . L . .

dle interaction for a user, and thus be separated from the servefn archltectu_re providing dlfferent_strategles to handle the chal-
There are then a number of deployment scenarios for the de ges described by(Lfl has been implemented. Our own goal

. : : - rhaking this an unobtrusive framework has proven to be against
starting from a standalone server, handling everything (Flglggpwe of the requirements for adaptability, and flexibility. Real-

E\?ﬁéﬁ%%ﬁ;%ﬁg csgri:?nrgr\\/vtlct)ha(l)lnuesgfsszlggﬁér’ and the Serizmg these would be a tradeoff, we settled to create an interface
general enough to decouple the most obtrusive requirements from
the implementation of the framework, obtaining what we believe
is possibly the less obtrusive interface in the present metamodel.
On the way to the development of this architecture, we have
proven the usability of a metamodel fdynamic generic program-
ming, and given examples in the creation of a segeheric ser-
vices These are not the only possilideneric serviceshat can
be created through the metamodel interface, but they are the be-
ginning of a growing set of services that do not need to adapt,
because they are alreaggneric
The design of software architectures in different areas has fol-
lowed the idea of providing a frame, based in known practices in
the area, to delimit future applications, allowing faster develop-
f— S ment by reusing well-known-solutions. Following this approach,
’ ’ usually meant making a great number of design decisions, based
on the well-known-practices of the area, that would later lead to
the frame specified previously. The proposed solution departs this
r%Ipproach radically by providing an extensible base upon which
particular solutions can be built. At first sight, it may seem that
this approach does not provide a real solution, as many design
One of the ideas behind this, is that users without accessditisions have deliberately not been taken. On closer inspection
video, because they lack the hardware or software, can useHbeever, the advantage of such infrastructure starts to be clear,
application by connecting to one of the hosts that can provideds decisions can be delayed and solutions tailored for particular
Another idea is that future capture devices with higher processituations at runtime by plugging in components with the desired
power could probably capture the image and send it through ne¢havior.
work to one server. By using this approach, a server can be conAt the time of this writing, porting to OSs other than Linux
nected to multiple cameras. (Windows and WIinCE) had already been started. However, even
These are only some of the possibilities considering the abavieen the described interfaces (metamodel, remote objects, repli-
division for the application. Some ideas that are not proven in tluation, serialization etc.) have already been ported, the rest, mostly
demo include how changing some parts of the infrastructure d&@S specific part is currently unfinished.
not affect the implementation of the components that are used by he configuration service is still an evolving part, and it doesn’t
it. For example, it would be possible to replace the Python servimetually include the notion of different contexts; a topic to be tack-
with another interpreted service, (Tcl, Ruby, etc), and the restlefl in future work.
the components would not need to be changed. It would even b&he last issues are the remaining obstacles before our work can
possible to have a different interpreter running in each client, thie tested in mobile applications.

4-SCENE MGMT

SHINTERACTION
SERVER

2-TRACKING

1-VIDEQ FEED

=== CLENTI

Figure 12: Standalone server handling everything, with two re
dering slaves.

Acknowledgments

[12]

This study was supported in part by the Core Research for Evo-
lutional Science and Technology (CREST) Program - "Advanced
Media Technology for Everyday Living” - of the Japan Science
and Technology Corporation (JST).

[13]

References

[1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

[9]

(10]

(11]

Java tm core reflection api and specification. Technical re-
port, Sun Microsystems Inc, 1997.

"jJava remotemethodinvocation specification”. Technical re-
port, Sun Microsystems Inc, 2002.

[14]
Felix Bachman, Len Bass, Charles Buhman, Santiago
Comella-Dorda, Fred Long, John Robert, Robert Seacord,
and Kurt Wallnau. "volume ii: Technical concepts of
components-based software engineering”. Technical rep&lé]
Software Engineering Institute, Pittsburgh, PA 15213, USA,
2000. [16]

Martin Bauer, Bernd Bruegge, Gudrun Klinker, Asa
MacWilliams, Thomas Reicher, Stefan Riss, Christian San-
dor, and Martin Wagner. Design of a component-based aug-
mented reality framework. liProceedings of the Interna-[17
tional Symposium on Augmented Reality (ISAB3tober
2001.

Kenneth P. Birman. Replication and fault-tolerance in the
isis system. InSOSP '85: Proceedings of the tenth ACM
symposium on Operating systems principlesges 79-86,
New York, NY, USA, 1985. ACM Press. [18]

Michael Clarke, Gordon S. Blair, Geoff Coulson, and Nikos
Parlavantzas. An efficient component model for the 00[11-
struction of adaptive middleware. INliddleware 2001: o
Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelbepmages 160-178,
London, UK, 2001. Springer-Verlag.

Paolo Costa, Geoff Coulson, Cecilia Mascolo, Gian Pietfgq)
Picco, and Stefanos Zachariadis. The RUNES Middle-
ware: A Reconfigurable Component-based Approach to Net-
worked Embedded Systems. Pnoceedings of the 18 An-

nual IEEE International Symposium on Personal Indoor arf@1]
Mobile Radio Communications (PIMRC’Q5Berlin (Ger-
many), September 2005. To appear.

G. Blair F. Kon, F. Costa and R. H. Campbell. The cadg?]
for reflective middleware. Communications of the ACM
45(6):33—-38, 2002.

Erich Gamma, Richard Helm, Ralph Johnson, and Jol[lzngl
Vlisside. Design Patterns: Elements of Reusable Object-
Oriented Software Addison-Wesley, Reading, Mas-
sachusetts, 1995.

Ennio Grasso. Jrb: A reflective orb. Technical Report 1fp4]
CSELT, 1997.

Michi Henning and Steve VinoskiAdvanced CORBA pro-
gramming with C++ Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

Gerd Hesina, Dieter Schmalstieg, Anton Furhmann, and
Werner Purgathofer. Distributed open inventor: a practical
approach to distributed 3d graphics. VRST '99: Proceed-
ings of the ACM symposium on Virtual reality software and
technologypages 74-81, New York, NY, USA, 1999. ACM
Press.

Fabio Kon, Manuel Ro#n, Ping Liu, Jina Mao, Tomonori
Yamane, Luiz Claudio Maga#les, and Roy H. Camp-
bell. Monitoring, Security, and Dynamic Configuration
with the dynamicTAO Reflective ORB. IRroceedings of
the IFIP/ACM International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing (Middle-
ware’2000) number 1795 in LNCS, pages 121-143, New
York, April 2000. Springer-Verlag.

Asa MacWilliams. Software development challenges for
ubiquitous augmented reality. Bl Augmented Reality and
Virtual Reality WorkshopSeptember 2004.

Bertrand Meyer. Object-Oriented Software Construction
Computer Science Series. Prentice Hall, 2 edition, 1997.

Martin Naef, Edouard Lamboray, Oliver Staadt, and Markus
Gross. The blue-c distributed scene graphVR’'03: Pro-
ceedings of the IEEE Virtual Reality 2008age 275. IEEE
Computer Society, 2003.

Wayne Piekarski and Bruce H. Thomas. An object-oriented
software architecture for 3d mixed reality applications. In
ISMAR '03: Proceedings of the The 2nd IEEE and ACM
International Symposium on Mixed and Augmented Reality
pages 247-256, Washington, DC, USA, 2003. IEEE Com-
puter Society.

Manuel Roman, Fabio Kon, and Roy H. Campbell. Reflec-
tive middleware: From your desk to your hand. Technical
report, Champaign, IL, USA, 2000.

Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt
Szalawari, L. Miguel Encarnago, Michael Gervautz, and
Werner Purgathofer. The studierstube augmented reality
project. Presence: Teleoperators & Virtual Environments
11(1):33-54, 2002.

Andrew S. Tanenbaum and Maarten Van Steistributed
Systems: Principles and Paradign®rentice Hall PTR, Up-
per Saddle River, NJ, USA, 2001.

Henrik Tramberend. Avocado: A distributed virtual reality
framework. InVR '99: Proceedings of the IEEE Virtual Re-
ality, page 14. IEEE Computer Society, 1999.

Guido van Rossum. Extending and embedding the Python
interpreter. Technical report, 2005. For Python Release
2.4.1.

K. Watsen and M. Zyda. Bamboo - a portable system for
dynamically extensible, real-time, networked, virtual envi-
ronments. INVRAIS '98: Proceedings of the Virtual Real-
ity Annual International Symposiyrmpage 252, Washington,
DC, USA, 1998. IEEE Computer Society.

Josie Wernecke. The Inventor Mentor: Programming
Object-Oriented 3d Graphics with Open Inventor, Release
2. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1993.

	1 Introduction
	2 Related Work
	3 Base architecture: metamodel
	4 Generic Services
	4.1 Communication
	4.1.1 Remote Objects
	4.1.2 Replication
	4.1.3 Interfacing with CORBA

	4.2 Scripting: Interfacing with Python
	4.3 Configuration
	4.4 Serialization

	5 Examples: Reconfigurable city planning
	5.1 Distributed scenegraph
	5.2 Application layout

	6 Conclusions and future work

