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Abstract

In the dynamic environments of UAR, software is expected to be
modifiable to accommodate for new user needs, expectations, and
changing environments. Reflective middleware provides, in a cer-
tain way, an open implementation and presents an efficient alter-
native to deal with highly dynamic environments. The present ar-
ticle describes an implementation of Reflective Middleware based
on an object oriented metamodel and its application in the field
of AR. Along the way, it introduces support services that deter-
ministically apply to every component, even those yet to be engi-
neered. These services have been defined as Generic Services, the
process of creatinggeneric servicesis demonstrated with various
examples, showing their advantages as regards to issues of code
reduction and flexibility.
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1. Introduction

As already signaled by [14] augmented reality, particularly wear-
able AR, is beginning to overlap with ubiquitous computing.
Ubiquitous Augmented Reality is defined as the intersection of
these two fields. In his paper, Mac Williams further introduced
challenges for the development of applications for UAR. These
includeuncertainty, given by the need for components with differ-
ent availability to interact in a changing context with incomplete
knowledge of other components.Ill-definition of the expected sys-
tem behavior, produced as a result of combining new and chang-
ing technologies, users and specialists from a wide range of fields.
And performance, imposed by the interactive and immersive na-
ture of mixed reality applications.

As an example, consider a user A entering a room carrying her
own computing devices. In the room, another user B engages in an
architecturing prototype, using the demo application of section5.
Meanwhile two other users, C and D, play an AR game of chess.
User A should receive notification of availability of other applica-
tions in her computing devices. She should also be able to engage
in collaborative activities, for example with user B, receiving sup-
port to load any new components that might be required. This
example fits the definition of UAR [14], and the room area can
be defined as anaugmented area. Furthermore, a user E should
possibly be virtually navigating the city being constructed by user
B, in a remote place, through a completely virtual interface, this
would make the application demo an example of amixed area
where augmented and virtual interfaces mix. Finally, as user A
leaves, she should be able to unload all unnecessary components,
and also take all those she found interesting enough.

Our goal is the development of an unobtrusive architecture for
UAR. To provide for the above mentioned challenges, such a ar-
chitecture should include anadaptable structurebased on anex-
tensible set of components, and a common software infrastructure

or middlewaresupporting different communication protocols and
scalability.

Various standard approaches provide support for distributed
systems [11] [2], and some frameworks and toolkits have been
based on these approaches. These middlewares often offer com-
ponent models that support third party development, composition
and deployment, and the approaches to handle self-awareness are
added by each solution. However, these models are in general
offered on top of the middleware platform. As highlighted by re-
search in reflective middleware [8], there are advantages to also
exploit component techniques and reflection within the middle-
ware. Key among these advantages are the possibility to adapt to
changes in the environment, and to customize the options to fit into
wide range of devices. These advantages have been applied, in the
presented proposal, to the creation of support services, defined as
generic services.

In the following, an infrastructure that provides a base layer for
development of these changing environments is presented. Insight
on related work, and a brief description of the application of reflec-
tion in areas related to AR are provided in the following section.
In section three the reflective infrastructure serving as foundation
for generic services and self-awareness is presented. Example ser-
vices created on top of the metamodel are introduced in section
four. Finally examples and conclusions are presented.

2. Related Work

“A distributed system should easily connect users to resources; it
should hide the fact that resources are distributed across a net-
work; it should be open and it should be scalable”[20]. Different
approaches at distribution are useful in different situations. When
the state of the distributed part is not needed in every host and the
processing can be carried out by a single computer, remote invo-
cation can be used. There are situations when the state is needed
in every host, for example the graphic models are needed to ren-
der, then a replication approach can be used. There are situations
when hybrid approaches are recommendable. Various standard
approaches provide support for distributed systems CORBA [11],
Java RMI [2]. These approaches often require careful planning
of the interfaces and how they will be used. Once the components
have been properly designed, applications can be developed in dif-
ferent scenarios, always supported by the middleware’s services.
However, these standards not always provide services for all the
communication needs, for example JavaRMI does not support ac-
tive or passive replication. Decisions on the way interfaces will be
used can not be delayed.

Ubiquitous Computing has raised the requirement for flexibility
in the software infrastructure layer. Middleware solutions focused
in this area propose extending distributed systems, making them
aware of their structure. Early approaches were based on keeping
an connection map between the components of the architecture
[18] [13]. The OpenCOM project uses metamodels to describe the
connections between components and the architecture of the given



solution [6]. OpenCOMv2 is expected to extend the middleware
to provide a multilanguage support while RUNES [7] attempts to
extend the above ideas to embedded systems. Reflectivity is ar-
gued to be “an efficient way to deal with highly dynamic environ-
ments, supporting the development of flexible and adaptive sys-
tems and applications” [8]. These approaches are mainly focused
on reconfiguration problems.

In Virtual Reality area, approaches aiming at distributed vir-
tual environments, have proposed mechanisms such as distributed
scenegraphs [21] [16] [19]. Following the ideas behind designs
of scene-graph toolkits ( [24] among others), modular approaches,
intended for flexible virtual environments [23] [21] identified the
need of a minimum reflective infrastructure, to at least recognize
types in the modules.

Given the variety of sensors, tracking, input and display devices
it deals with, reconfiguration capabilities have been considered
by most efforts in Augmented Reality architectures. The Tinmith
toolkit [17] focuses on mobile outdoor AR, and uses a data driven,
pipelined architecture. Reconfiguration of the system relies on
reparsing stored objects to change runtime values. Studierstube
is built on top of Open Inventor; applications written as separate
modules are loaded dynamically into the runtime framework, de-
coupling application development from system development. Be-
sides, Studierstube relies on OpenTracker to accommodate tracker
data and on a distributed scenegraph [19] for distribution. De-
veloped with focus in UAR, Dwarf [4] is based on the idea of
distributed services. Each network node runs a service manager,
which keeps information about local services such as what a ser-
vice offers to others, its “abilities”, and what it requires to properly
function, its “needs”. This structural information can be used to
reconfigure the system on the fly through a Petri net GUI, and can
be regarded as reflective information about the services, provid-
ing enough structural awareness to be able to change the software
structure at runtime. One difference in this approach is it does
not provide enough reflective means to manipulate unknown in-
terfaces (other than supported by the middleware), thus lacking
support for Generic Service. On the other hand DWARF relies on
CORBA to realize distributed services and to handle communica-
tions, adding the reflective information for reconfiguration. This
not only adds up to the layering of the system, but it also gives up
advantages of using component based techniques and reflection
within the middleware platform.

Our approach relies on a metamodel with structural and also
behavioral characteristics, which provides manipulation capabil-
ities in addition to structural information. Similar metamodels
have been supported by programming languages, particularly in-
terpreted languages [1], Python. However, they have seldom been
used to create generic services, like remote objects, and are often
provided as one more feature of the language. In Java RMI for ex-
ample, the designer is forced to inherit from particular interfaces,
that is to also plan whether objects should be remote invocable.
Such decisions of how a certain component would be used can be
deferred until deployment time or even runtime by relying on the
metamodel.

3. Base architecture: metamodel

Self-aware architectures contain runtime information that allows
them toreflectupon themselves and adapt to changes in the envi-
ronment. “A component implements one or moreinterfacesthat
are imposed upon it” [3]. Interfaces, in object oriented architec-
ture, are described by classes whose features define their behavior
[15]. A class can contain creation features, attribute features and
method features.

The metamodel (Figure 1) provides abstract interfaces to

the above mentioned entities. It also includes a base interface
(IMetaObj) for components that support the metamodel. A com-
ponent supporting the metamodel must, minimally, provide a way
to retrieve an instance of theIClass interface, from which in-
stances of the rest of the metamodel can be acquired. In general,
it is only necessary to provide a handle to the function used to cre-
ate the instances of the required interfaces (IClass, IMethod, etc.).
To facilitate such a task, macros that instantiate derived template
classes are provided. Therefore, to export the metamodel for the
class in Table1, a declaration of the form in Table2 is used.

IMetaObj

+class: IMetaClass *

+get_class(): IMetaClass *

+get_methods(): IMethod *

+get_attrs(): IAttr *

+get_feature(): IFeature *

IMetaClass

+features: Dict<IFeature *>

+get_methods(): IMethod *

+get_features(): IFeature *

+get_creation(): ICreation *

+make_obj(): IMetaObj *

IFeature

+is_method(): bool const

+is_attr(): bool const

+is_creation(): bool const

IMethod

+exec(): Value

+set_arg(int,Value): void

+get_arg(): Value

IAttr

+get_value(): Value

+set_value(in val:Value)

+get_type(): IMetaClass *

ICreation

+make_obj(): IMetaObj *

Figure 1:Base interfaces of the metamodel.

Table 1:ARToolkit tracking class.
class ARtrack

public:

ARtrack();

virtual ˜ARtrack();

void set_config_file(String file);

String get_config_file();

void set_fitting_mode(int fm);

int get_fitting_mode();

void set_imageproc_mode(int ipm);

int get_imageproc_mode();

void add_marker(ARmarker * marker);

int load_pattern(String filename);

void detect_markers();

void select_optimal();

ARmarker * get_marker(String name);

void resolve_transform();

The macros mimic a class declaration, and they could be ex-
tracted from a header file by a preprocessor (i.e. idl compiler).
However, it is not necessary for a certain component to use the
provided macros, or even the template classes, as long as it can
provide a function to create instances derived from the base meta-
model interfaces. It would be possible for some component to
provide its own implementation of these interfaces.

The metamodel takes care of providing one uniform generic
interface, decoupling the interfaces of components from the needs
of the various services that compose the framework (Figure2).

This generic interface can be used not only to discriminate com-
ponents by their type but also to obtain information about the at-
tributes a component uses, its “needs” or “receptacles” in [4] and
[6] respectively. It also provides information about the interfaces a
given component implements, thus the “abilities” or “interfaces”,



Table 2:ARToolkit tracking metamodel.
EXPORT_CLASS (ARtrack)

ATTR(config_file, String,

get ,set, String)

ATTR(fitting_mode, int, get, set, int)

ATTR(imageproc_mode, int, get,set, int)

METHOD1(void,false,

add_marker,ARmarker * )

METHOD1(int, true,

load_pattern, String)

METHOD(void, false, detect_markers)

METHOD(void, false, select_optimal)

METHOD1(ARmarker* , true,

get_marker, String)

METHOD(void, false, resolve_transform)

END_EXPORT(ARtrack)

Figure 2:Metamodel decoupling application components from ar-
chitecture services. The framework services are shown darkened,
while the white blocks symbolize example components from the
demo in Section5

also in above mentioned work. Furthermore, the IMethod inter-
face supports dynamic invocation of arbitrary methods. A method
instance can store references to arguments, and be executed when
necessary, thus providing a way to defer the execution of a call
from its preparation generically. It can be linked to different in-
stances of the class. A creation procedure is similar to a method,
but the result of its execution is the creation of a new instance of
the class ( it is a constructor). So each IClass (in the metamodel)
is like a factory for its instances. Instantiating the factory pattern
[9] is then reduced to storing a collection of ICreation instances.
Attributes can also be set or their value obtained by using the ap-
propriate instance of the IAttribute interface.

4. Generic Services

The interfaces defined in the previous section are sufficient to han-
dle a component in a generic fashion. Through these interfaces a
number of support services can be created that can be used by all
components, even components that have not yet been created. The
following subsections include examples of services already avail-
able with different levels of maturity in the proposed architecture.

4.1. Communication

As stated at the beginning of the related work section, a distributed
system must provide some form of transparency. For this and for
flexibility reasons first remote procedure call, and later remote ob-
jects have been considered essential for distributed systems. They
allow a developer to use an instance of an object (or a procedure)
without knowing where it is being executed.

Replication was introduced in the area of fault tolerant systems,
but data replication has also proven useful for performance rea-
sons. A number of approaches to distribution in AR [12] and VR
[16] [21] have been based on replication of the scenegraph.

CORBA compliant middleware provides access to these ser-
vices. In the following subsections the approaches taken by this
architecture to the mentioned technologies will be outlined. Fi-
nally a possible interface to a CORBA infrastructure is introduced.

4.1.1. Remote Objects

Remote object architectures take advantage of the separation be-
tween an interface and its implementation to place the interface in
one machine, and the implementation in another. A client makes
method calls on aproxy, which only marshalsinvocations into
messages andunmarshalsreply messages into result values. The
implementation resides at a server machine, and provides the same
interface. An incoming invocation is first passed to aserver stub
or skeletonwhich unmarshalsit, invokes the method, and returns
the result. Clientproxiesand serverstubsmust be generated for
every interface that is expected to work remotely, which is an ob-
stacle if an component that was not designed for remote usage is
suddenly expected to move to a remote computer and work.

The proposed architecture includes an interface that can act as
proxy of any component that supports the metamodel (Figure3).
This generic proxycreates aremote invocationinstance with the
given arguments when itsinvokemethod is called, it serializes it,
and passes it to the underlying infrastructure to be sent by what-
ever communication method is being used.

IRemote

 peer: Url

 obj_id: ID

+invoke(feature:String,args:Value *,size:int): Value

Figure 3:Generic proxyinterface.

On the server sideskeletonsare not needed. Ageneric server
(Figure 4) keeps a list of id of thesharedcomponents. Upon
reception of an invocation, itunmarshalsit into a remote invoca-
tion instance; then it retrieves the indicated component and from
it the required IMethod interface; which is subsequently invoked,
finally, the result is sent back to the client (Figure5). At runtime,
an object can besharedjust by adding it to thegeneric serverwith
the desired id.

INetObj

 shares: Dict<ID, IMetaObj *>

 address: Url

+share(id:ID,obj:IMetaObj *): void

+unshare(id:ID): void

+lookup(id:ID): IMetaObj * const

+handle_remote_invocation(req:RemoteInvocation*): Value

Figure 4:Generic serverinterface.



CLIENT

ID:Obj1

INVOKE()

IRemote INVOCATION

INVOCATIONTarget:Obj1

Target:Obj1

Name:Add

Name:Add

Args:10

Args:10

Result:15

SEND
INVOCATION()

ANSWER()

SERVER

Obj1:5

Obj2

Obj3

GET_METHOD()

EXEC()

IMethod

Target:Obj1
Name:Add
Args:10
EXEC()

Figure 5: The remote invocation process as implemented by the
proposed architecture.

This approach has the disadvantage that thegeneric proxycan
not be used in a place where a local component is used (because
they might not share the same interface) however it has the ad-
vantage that a minimum

¯
implementation is used, this could prove

useful when developing for resource restricted devices like PDAs
or mobile phones. On the other hand, if what is calledstatic in-
vocation modelis required, wrappers can be generated by sim-
ply inheriting both from the exported class, and thegeneric proxy
and redefining the methods of the exported class to call theinvoke
method of thegeneric proxyinstead. These wrappers could also
be generated automatically. A similar approach for Java was pre-
sented by [10].

4.1.2. Replication

The discrimination betweenpassiveandactive replication gives
two replication models. In active replication allreplicasexecute
the same operations; while in the passive model, one replica ex-
ecutes the operations and then actualizes all others, during asyn-
chronizationstep. Some scenegraph replication approaches [12]
[16] [21] have been accomplished using passive replication.

One of the problems in replication is keeping replicas consis-
tent, of the above mentioned approaches some utilize thevirtual
synchronousmodel [5], in which replicas are collected by dy-
namic groups that allow them all to observe the same communica-
tion in the same order. In this model, when a new replicajoins the
group the completestatemust be transmitted to it.

The current architecture also bases its replication facilities in
the virtual synchronousmodel and uses a group communication
toolkit for reliable multicast. An active replication facility is pro-
vided by a single interface (Figure6), which derives fromgeneric
proxy and a singlegeneric server(which manages only one ob-
ject, and does not have a share list). Method invocations are sent
through the network, while attribute invocations are handled lo-
cally. Because the communications are received by all replicas in
order, it is guaranteed that executing a remote invocation will keep
the replicas consistent.

On the other hand passive replication is supported by provid-
ing a wrapper object (Figure7), the wrapper executes all meth-
ods on its current object, and synchronizes the replicas when its
methodsyncis executed. A variation, as implemented for the dis-
tributed scenegraph is to save incremental change information for
each method execution and then send only the changed parts to the
replicas. This variation is dependent on the replicated object, and
thus cannot be implemented generically.

An object replicated through passive replication requires a syn-
chronization mechanism, otherwise changes could take place at
two different replicas, and the synchronization step would leave
the replicated object in an inconsistent state. A distributed lock-
ing approach could be implemented using the described mecha-
nism of active replication, to guarantee synchronized access to the
replicas.

ISingleNetObj

+handle_remote_invocation(req:RemoteInvocation*): Value

IRemote

+invoke(feature:String,args:Value *,size:int): Value

IMimic

+invoke(feature:String,args:Value *,size:int): Value

+local_invoke(feature:String,args:Value *,
              size:int): Value

+remote_invoke(feature:String,args:Value*,
               size:int): Value

+handle_remote_invocation(req:RemoteInvocation*): Value

Figure 6:Active replication interface.

IMirror

 replica: IMetaObj*

+sync(): void

+join(group:Url): void

+leave(): void

+invoke(feature:String,args:Value*,size:int): Value

Figure 7:Passive replication interface.

4.1.3. Interfacing with CORBA

As stated above, our approach does not require the generation of
proxiesor server stubsfor the remote invocation facilities to work.
It would be possible though, to generate a CORBA interface, keep-
ing the flexibility of our architecture. A reason for this could be
that there are available ORBs which have proven scalable, and pro-
vide support for wide range of protocols. Our approach is aimed
at simplicity, and as such it may fail to support certain protocols.
Neither has it been deployed widely enough to prove its scalability.

To create a generic CORBA interface that would not require to
generateproxiesandserver stubsfor all interfaces, it would suf-
fice to provide an interface for the above describedgeneric proxy.
The client side would still only have aninvokemethod, as also
the server side. On the client side, the invoke method would mar-
shal the arguments as before, but send them through CORBA in-
vocation. On the server side, a server stub would call thehandle–
invocationmethod of what was described above asgeneric server.

This approach would also provide a minimum implementation
for remote objects, this time using CORBA middleware. It has
similar advantages and disadvantages with the above. However
it has the advantage of using proven communication architecture.
This also proves the flexibility of our proposal, as it can adapt
to using different models with a minimum impact on the already
implemented components.

4.2. Scripting: Interfacing with Python

In the following theinterpretedlanguage will also be referred as
external, and code in the interpreter asexternal code, while the
compiledcode will be referred aslocal, and its language aslocal
language, without loss of generality.

The expected functionality of a scripting interface includes the
following four goals:

1. handling components from the interpreter.



2. creating new components in the interpreter based on the ex-
ported ones.

3. running scripts from the local code.

4. handling components created in the interpreter from the local
code.

The first two are generally referred to asextensions, while the
last two are examples ofembedding.

Interfacing with other languages is done using some kind of
wrapper, which serves as glue between the local and external lan-
guages. Wrappers must be registered with the external language.
These wrappers are responsible for receiving invocations from
the external language, translating these invocations and execut-
ing them on the local language, and of returning appropriately to
the external language. This applies to most interpreted languages,
however, in the following, the discussion will be restricted to ob-
ject oriented ones.

The focus is then what is needed for the wrapper to translate
between the two languages. There are different approaches to cre-
ating wrappers for external languages, (the following will be fo-
cused in Python). In general the languages provide an API which
can be used to write extensions [22]. A wrapper for a simple class
(Table 3) using the API would look like Table4. There are also
libraries that provide automaticstatic translation, and can gener-
ate glue code, although they are not completely unobtrusive (that
means they require developers to write in a certain way)(see Ta-
ble 5). However, the major disadvantage is that these libraries
can only make astatic translation, that is if changes are made to
the exported interfaces, code must be regenerated and recompiled.
This defeats the flexibility goal, since changes in a component now
impose changes in the service, which no longer isgeneric. The
idea of replacing an interpreter with a different is also unimagin-
able without generating code for every possible interpreter, just in
case.

Table 3:A simple class that will be exported to Python.
class World{

public:

void set(std::string m){ msg=m;};

std::string greet(){return msg;};

std::string msg;

};

In the proposed architecture, to achieve the first goal ageneric
wrapperTable 6, based on the metamodel interface has been cre-
ated. It receives invocations from the external language, with ar-
guments also in the external language, queries the metamodel for
the requested feature and either executes it with the given param-
eters if it is a method, or manipulates its values if it is an attribute.
When returning objects which are themselves components, they
must also be wrapped to pass them to the interpreter. The wrapper
accomplishes the task of translator between the framework and the
external language.

A generic Python service(Figure 8) manages the dynamic
wrapping of components, the creation of instances, and their de-
struction,

The interpreter also requires to know about the exportedclasses
to be able to accomplish the second goal above. In the case of
Python, the interpreter relies on reflection, by which all its classes
are defined. Taking this into account, thegeneric Python service
generates Python classes from the framework classes atruntime.
This service also creates wrappers, as only it knows about the
counterparts of the local metamodel in the interpreted side.

Table 4: Wrapper to export World class written using the API, it
doesn’t include the declaration of methods other than constructor
and destructor. Neither does it show the declaration of the Py-
WorldType structure, for reasons of space.

typedef struct {

PyObject_HEAD

World * world;

} PyWorld;

/ * --------- Destructor ------------------------- * /

static void

PyWorld_dealloc(PyWorld * self){

delete self->world; }

/ * --------- Constructor ------------------------- * /

static PyObject *
PyWorld_new(PyTypeObject * type, PyObject * args,

PyObject * kwds) {

PyObject * result = PyObject_New(PyWorld, type);

result->world = new World;

return result; }

Table 5:Wrapper written to export World class with Boost.
#include<boost/Python.hpp>

using namespace boost::Python;

BOOST_PYTHON_MODULE(hello)

{

class_<World>(‘‘World’’)

.def(‘‘greet’’, &World::greet)

.def(‘‘set’’, &World::set);

}

Table 6:Generic Wrapper declaration.
typedef struct {

PyObject_HEAD

/ * reference to its Python class * /

PyMetaClass * in_class;

CPtr<IMetaObj> obj;

} pyObj;

Regarding the third goal, thegeneric Python serviceruns scripts
on behalf of the framework, and can decide whether the inter-
preter, or the framework should be initialized; this last is crucial,
as the framework interface could be loaded from the interpreter by
including the shared library, in this case, the first object created
is thegeneric Python serviceand it must be aware of the need to
initialize the basic infrastructure before running any commands.

The last goal is to be able to invoke methods on instances cre-
ated by the external language from the compiled one. This is again
possible through a proxy, and it is only possible to do it directly
if the interface being invoked has been defined in the local im-
plementation. For example if the instance, created in Python, is
derived from an interface defined in C++, then it may be manip-
ulated through this interface, if not it might only be manipulated
through a proxy.

4.3. Configuration

Configuration is possible by utilizing the interpreter. Through it,
a component can be queried for its interfaces, and its attributes.
Based on this information, and the information kept by various
subsystems on the runtime components, it is possible to assign
a different instance of the same interface to a given component.



IPyServer

+exported_classes: Dict<String, PyObject*>

+New(type:PyObject*,args:PyObject*,kwds:PyObject*): PyObject*

+Delete(obj:PyMetaObj*): PyObject*

+wrap(obj:IMetaObj*): PyObject*

+create_class(bases:PyObject*,dict:PyObjet*,
              name:PyObject*): PyObject*

+delete_class(klass:PyMetaClass*): void

+raise(String:reason): PyObject*

+run_string_script(script:String): Value

+run_file_script(file:String): Value

+isInitialized(): bool

+isPythonMain(): bool

Figure 8:Generic Python serviceinterface.

There is a local naming service which provides directory-like
structure and manipulation for searching components by name.

This interface is very primitive; therefore a GUI based interface
with semi-automatic assistance is planned for future work.

4.4. Serialization

One common usage for introspection has been serialization, the
capability to save an object state to a stream from which it can later
be recovered, be it at the same location, or at a remote one. Our ar-
chitecture also provides a serialization interface which works au-
tomatically for most components. However, if a developer is in
doubt, she may decide to implement the methodssaveandrestore,
which will be used in such a case. These methods are passed an
instance of aStore, which provides methods to store and restore
basic elements such asint, float, bool,etc. and facilitates the task
of saving/restoring current state.

5. Examples: Reconfigurable city planning

An example application has been created, which allows two users
to select, place and manipulate objects in the frame of a city-
planning application. For this demo, extra infrastructure was re-
quired for distributed presentation. A distributed scenegraph was
created to fulfill this requirement. The distributed scenegraph ap-
proach is briefly introduced in the next subsection, followed by the
application layout.

5.1. Distributed scenegraph

As a test of the communication facilities, and with the goal of pro-
viding a distributed presentation facility in the framework, Coin3D
(Open Inventor implementation) was extended withdistributed
node. The architecture of Open Inventor allows receiving notifi-
cation on modification of a subtree, by placing its root in a sensor
node, based on the approach taken by [12]. The distributed node
places itself into a sensor to receive notification of the changes in
its subtree. Furthermore, it uses thepassive replicationfacilities
to relay the changes to remote replicas.

There are different ways to relay the changes. It can be done
upon occurrence automatically, or by explicitly calling asynchro-
nizemethod on the node. The second approach is desirable when
changes to the subtree occur in bursts, then the changes can be
kept in a list, and sent all together. This reduces the transmis-
sion of small messages. Nevertheless, the delay produced in the
changes to the replicas must not be noticeable to the viewers.

Among the advantages of this approach at distributed scengraph
are the possibility to compose a scenegraph from more than one re-
mote scenegraphs (as this approach providespartial sharing) and

the usage of a well-documented scene-toolkit. However, the pro-
posed approach lacks concurrency management facilities, which
must be added separately. A shortcoming of using an external
toolkit, which does not support the proposed architecture, is that it
can not benefit from the rest of the services (i.e. scripting). Solu-
tions to the last issue are under analysis.

5.2. Application layout

Users sit in front of a table, the playground table, which contains
markers and cameras pointing to its surface, one camera for each
host is used. A special marker with a handle is used as an input
device (the stick-marker, Figure9). Interaction is gesture based,
dependent on the motion of the stick-marker. Movements that trig-
ger actions include inclination of the marker by more than a given
angle, up movement of the marker and others. The markers are
tracked by ARToolkit. Users may change the position of the menu,
by moving the marker that symbolizes it, open it (by occluding it
with the stick-marker) and select models from a comprehensive
directory menu (Figure10). Once a model is on the stick-marker,
it may be dropped at any point on the table surface.

Figure 9:The Stick-Marker input device

Figure 10:Model selection menu on stick-marker

Configuration changes can be scheduled at any time by issuing
commands in a Python shell-like console.

The demo is pointed not really at using the application, but at
seeing how it can be reconfigured on the fly. This is only an exam-
ple of possible uses for the described architecture. And although a
similar demo could be created by using other approaches; creation
of software for a seemingly complex setup as this is greatly sim-
plified by the proposed architecture, as the software components
must focus on their own task, and are required to solely support
the metamodel interface.



There are several ways one could divide the application. Tak-
ing into account layers relevant to AR systems, it can be divided
vertically and horizontally as in Figure11. The demo uses three
computers, two clients, and a server that manages the shared re-
sources, (shared scene).

Figure 11:Layering of the demo application.

With the exception of the shared scene management, the other
layers could be handled by any of the computers, client or server,
that is depending on whether they have access to the underlying
layer. For example:trackingdepends on thevideo feedto recog-
nize the markers in the current frame. If a host has access tovideo
feed, either local or through the network, it can handle tracking.
Horizontally, any host capable of doing its owntrackingcan han-
dle interaction for a user, and thus be separated from the server.

There are then a number of deployment scenarios for the demo,
starting from a standalone server, handling everything (Figure
12); to a distributed system with one host per user, and the server
handling only parts common to all users (Figure13).

Figure 12:Standalone server handling everything, with two ren-
dering slaves.

One of the ideas behind this, is that users without access to
video, because they lack the hardware or software, can use the
application by connecting to one of the hosts that can provide it.
Another idea is that future capture devices with higher processor
power could probably capture the image and send it through net-
work to one server. By using this approach, a server can be con-
nected to multiple cameras.

These are only some of the possibilities considering the above
division for the application. Some ideas that are not proven in this
demo include how changing some parts of the infrastructure does
not affect the implementation of the components that are used by
it. For example, it would be possible to replace the Python service
with another interpreted service, (Tcl, Ruby, etc), and the rest of
the components would not need to be changed. It would even be
possible to have a different interpreter running in each client, this

Figure 13:Separate systems for each user leave the server to han-
dle only shared parts.

has not been included in the demo for lack of implementations of
services to handle other interpreters.

6. Conclusions and future work

An architecture providing different strategies to handle the chal-
lenges described by [14] has been implemented. Our own goal
of making this an unobtrusive framework has proven to be against
some of the requirements for adaptability, and flexibility. Real-
izing these would be a tradeoff, we settled to create an interface
general enough to decouple the most obtrusive requirements from
the implementation of the framework, obtaining what we believe
is possibly the less obtrusive interface in the present metamodel.

On the way to the development of this architecture, we have
proven the usability of a metamodel fordynamic generic program-
ming, and given examples in the creation of a set ofgeneric ser-
vices. These are not the only possiblegeneric servicesthat can
be created through the metamodel interface, but they are the be-
ginning of a growing set of services that do not need to adapt,
because they are alreadygeneric.

The design of software architectures in different areas has fol-
lowed the idea of providing a frame, based in known practices in
the area, to delimit future applications, allowing faster develop-
ment by reusing well-known-solutions. Following this approach,
usually meant making a great number of design decisions, based
on the well-known-practices of the area, that would later lead to
the frame specified previously. The proposed solution departs this
approach radically by providing an extensible base upon which
particular solutions can be built. At first sight, it may seem that
this approach does not provide a real solution, as many design
decisions have deliberately not been taken. On closer inspection
however, the advantage of such infrastructure starts to be clear,
as decisions can be delayed and solutions tailored for particular
situations at runtime by plugging in components with the desired
behavior.

At the time of this writing, porting to OSs other than Linux
(Windows and WinCE) had already been started. However, even
when the described interfaces (metamodel, remote objects, repli-
cation, serialization etc.) have already been ported, the rest, mostly
OS specific part is currently unfinished.

The configuration service is still an evolving part, and it doesn’t
actually include the notion of different contexts; a topic to be tack-
led in future work.

The last issues are the remaining obstacles before our work can
be tested in mobile applications.
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