
A Constrained Road-Based VR Navigation Technique
for Travelling in 3D City Models

Timo Ropinski, Frank Steinicke, Klaus Hinrichs
Institut für Informatik, WWU Münster, Einsteinstraße 62, 48149 Münster, Germany

{ropinski,fsteini,khh}@math.uni-muenster.de

Abstract

In this paper we propose a novel navigation metaphor
for the exploration of 3D city models in virtual environ-
ments. The presented metaphor supports intuitive navi-
gation without disorientation through 3D city models in
a manner similar to travelling in the real world. Based
on a graph representation of the road network of a 3D
city model camera paths are calculated and used to en-
able smooth camera motion. We will explain how smooth
camera motions are computed and describe a user interface
usable in both desktop-based as well as projection-based
environments to specify travel destinations.

Keywords: Virtual Reality, City Models, 3D Navigation,
Travelling Metaphor

1. Introduction

Virtual 3D city models provide an important tool for visu-
alizing and communicating spatial information associated
with urban environments. They form the basis for many
visualization applications in the areas of city-planning, sci-
entific simulations as well as tourism. Although the graph-
ical representation of today’s 3D city models tends to be
very realistic, especially when combined with stereoscopic
display technologies in virtual reality (VR) environments,
the navigation metaphors for exploring these city models
need further improvements to allow an intuitive navigation
without disorientation. In particular, current camera and
viewpoint motion control techniques are reviewed in this
paper and a new technique is introduced. This technique
has been developed with the goal to allow natural naviga-
tion through 3D city models.

In VR the term travelling denotes an action performed to
get from one location to another [3]. There are three impor-
tant parameters associated with travelling, namely direc-
tion of motion, speed and acceleration. In reality we travel
for instance by steering a car while using the accelerator and
the brake pedal. As pedestrians we simply walk through the
world and turn our head to explore the surroundings. In
most VR environments we are not able to perform such a
kind of travelling, because of a lack of one-to-one mapping
between the user’s and the camera’s motion. Although a
one-to-one mapping would result in a natural navigation,
since it does not require any special navigation-related ac-
tions, it is not intended in applications where long distances
have to be covered and the bounds of the virtual environ-
ment (VE) exceed the bounds of the tracked area. Besides
these mapping problems, a user navigating through a VE
needs to be aware of his current position, his destination as
well as the best path to reach the destination; the quality
of a path and hence the best path may vary with the appli-
cation domain. Therefore, optimized navigation metaphors

are needed which ease travelling through VEs and consider
these aspects.

Bowman et al. state, that the most intuitive navi-
gation metaphors adapt real world principles and thus
improve usability [2]. For instance, relative navigation
as well as tele-transportation are not very intuitive and
both often lead to disorientation. A common navigation
metaphor for desktop-based VR is the fly metaphor which
enables the user to define position and orientation as well
as speed and acceleration of the virtual camera by using the
mouse and/or the keyboard. This multiple DoF navigation
metaphor often involves a cognitive overload, which may
result in disorientation if the user is not familiar with this
kind of navigation, since in reality he is forced to move with
2 DoF on the ground plane and the head can be oriented
to have a look-around [8].

To avoid disorientation during navigation the concept of
constrained navigation has been proposed. A constrained
navigation is a method that appropriately restricts the
user’s degrees of freedom [8]. Often the degrees of freedom
are reduced to only 2 DoF, which corresponds to ground-
based navigation, where the user can only move with
respect to a plane, in most cases the ground plane of a
VE. By using constrained camera navigation, the cognitive
overload is reduced significantly, and therefore the risk of
disorientation, which often results from awkward camera
orientations, is minimized. However, solely reducing
the DoF during navigation does not necessarily avoid
disorientation. In addition it is important to support the
user during the navigation task visually by displaying
appropriate information, e.g., the current camera position
in relation to the entire environment.

In this paper we introduce a constrained navigation
metaphor, which permits a very natural exploration of 3D
city models. This metaphor has been developed to provide
an intuitive interface supporting VR-based exploration of
3D city models and has been preliminarily evaluated in the
context of the city of Münster (see Figure 1). We constrain
the users degrees of freedom by allowing road-based
navigation only. Our road-based navigation metaphor
prompts the user to specify a destination to which he wants
to travel. After this specification the shortest road-based
camera path from the current position to the destination
is computed, and the camera is appropriately moved in
a smooth manner, i.e., we include animated transitions
between successive way points. The proposed navigation
metaphor allows a natural navigation by specifying the
destination with a single action and by travelling on the
road network similar to the real world exploration of urban
environments. Thus the spatial comprehension of the 3D
city model is improved, which facilitates the generalization
process needed to transfer the explored environment to
the real world environment. Furthermore, the presented



technique provides a mechanism to give the user feedback
about his current position as well as the precomputed
camera path at any time during the exploration process.

In the next section we discuss some related work con-
cerning navigation metaphors designed for the exploration
of VEs. In Section 3 we explain the calculation of the
camera path based on a graph representation of a road net-
work. A user interface which provides an intuitive usage of
the presented navigation technique in both desktop-based
as well as projection-based VR environments is described
in Section 4. In Section 5 we outline some approaches
to obtain a graph representation of urban road networks
for cases where no such data is available. The paper
concludes in Section 6 by summarizing our contribution
and discussing some thoughts concerning future work.

2. Related Work

Bowman states that the navigation process within VEs is
split into two separate tasks [3]: travelling is the actual
movement through VEs without considering decision mak-
ing processes, and wayfinding is the cognitive process to
define a path through a VE which may be assisted by the
underlying system.

Several navigation techniques have been developed to
aid both expert as well as novice users when navigating
through VEs. In this section we briefly summarize these
approaches. But, instead of providing a complete survey
of current navigation metaphors, only the most relevant
metaphors are reviewed briefly.

In 1990 Ware and Osborne [20] introduced and evalu-
ated their scene in hand, eyeball in hand and flying vehicle
navigation metaphors for exploring VEs. All these tech-
niques exploit 6 DoF input devices to manipulate the cam-
era position and orientation in a VE. Ware and Osborne
have shown that the flying vehicle metaphor is particu-
larly advantageous to explore complex VEs. In 1995 Mine
has discussed the point and fly metaphor [10], a gesture-
based metaphor for navigating in VR. In contrast to the
flying vehicle metaphor, the user does not steer the fly-
ing vehicle itself; instead he points out where to go, and
the computer moves the camera to the desired location ap-

Figure 1: Screenshot of our city visualization application
showing the 3D city model of Münster.

propriately. The Go-Go technique has been proposed in
1996 by Poupyrev et al. as an extension to the point and
fly metaphor [12]. This gesture-based navigation metaphor
uses a non-linear mapping between gesture and movement
and therefore allows acceleration during navigation.

The click and fly metaphor relieves the user from plan-
ning the path to move along; instead it requires the user
to specify certain destinations with the mouse and initiates
navigation on a system-calculated camera path. This navi-
gation metaphor can be also used in combination with the
world-in-miniature metaphor (WIM), which offers a second
dynamic viewport onto the VE [16]. The WIM metaphor
has been originally developed to ease object manipulation
in VEs. Pausch et al. have extended this metaphor for
navigating through virtual worlds [11]. Their VR-based ap-
proach incorporates a technique similar to the click and fly
metaphor for specifying the destination within a miniature
model of the world, which is usually projected onto a small
transparent screen held with the user’s non-dominant hand.
The user moves a miniature model of his view frustum by
manipulating a camera icon within the WIM to specify the
destination and to orient the camera. In their work Pausch
et al. do not propose a solution for how to do the camera
path planning to avoid collisions with obstacles during the
travelling. Furthermore, they do not provide the user any
visual feedback about the current camera path.

Tele-transportation represents an alternative approach
for travelling through VEs. When using this metaphor, the
user specifies a destination where the camera will be po-
sitioned immediately. This technique has the advantage,
that no time is needed for travelling which may be favor-
able in large scale VEs. The obvious disadvantage is that
no frame to frame coherence is maintained which makes it
difficult to comprehend spatial structures.

Bowman et al. have conducted a user study to evaluate
various travelling techniques for immersive VEs [2]. Their
results indicate that pointing metaphors seem to be
advantageous in comparison to gaze-based metaphors. Fur-
thermore they have shown that motion techniques which
instantly teleport users to new locations are correlated
with increased user disorientation. Therefore, smooth
camera motions between the source and the destination
location are necessary to allow intuitive as well as efficient
navigation.

For this reason we propose a navigation technique,
which combines the WIM metaphor with the click and fly
metaphor and can be applied in both desktop-based and
projection-based VR. Alternatively, we can use a 2D map
metaphor, to ensure that the user is aware of his current
position. Within projection-based VR environments the
miniature model of the virtual world can be controlled by
using a personal interaction panel which originally has been
proposed by Szalavári and Gervautz for the interaction
in augmented reality environments [18]. Schmalstieg et
al. [15] have presented an extension for VR environments,
whereas Stoev et al. use a similar technique for navigation
purposes [17]. As part of Section 4 we will briefly describe
in Subsection The Navigation Widget how we exploit these
concepts for our purpose.

In addition to the navigation metaphors reviewed
above, the user has to be assisted during exploration of
the VE. This is a wide area of research which cannot
be covered entirely in this paper. Instead we will list
examples of different research directions within this area.



One key feature of intuitive navigation is appropriate
camera path planning. In 2003 Salomon et al. have
proposed an algorithm which calculates navigation paths
in large-scale VEs [14]. Another approach to deal with the
complexity of controlling the virtual camera by Drucker
and Zeltzer [5] introduces a high-level user interface to
ease camera control and to reduce the cognitive overload
during navigation. Galyean presents the river analogy [7]
for a smooth motion along a calculated camera path.
With this metaphor the camera moves along the de-
fined path in a manner similar to a boat floating on a
river, i.e., with some latitude and control while also being
pushed and pulled by the pre-defined current of the water [7].

Several approaches constrain the user’s freedom during
navigation to reduce the cognitive overload, which is usually
introduced when using 6 DoF navigation metaphors. Han-
son and Wernert define constrained navigation as the re-
striction of viewpoint generation and rendering parameters
to goal-driven subclasses whose access is specified by the ap-
plication designer [8]. As mentioned above constraints serve
as an important addition to intuitive exploration without
overstraining the user who usually travels with only 2 DoF
in the real world. Fuhrmann and MacEachren [6] have first
postulated the necessity for constrained navigation tech-
niques when exploring geo-virtual environments. Differ-
ent constraint navigation techniques for geo-virtual envi-
ronments have been presented by Döllner in 2005 [4]. He
proposes restrictions for camera control to eliminate situa-
tions where the user gets disoriented because the camera is
oriented at awkward directions, e.g. into the sky. In partic-
ular, he introduces techniques which force the camera to be
positioned between a minimal and a maximal height above
the ground, and he constrains the camera to those orien-
tations for which a certain amount of the scene content is
seen by the camera.

3. Camera Movement

This section deals with the wayfinding and the travelling
behavior chosen for the road-based movement of the
virtual camera through a 3D city model. We assume that
the road network is given as a planar graph G = (V, E),
with the set of nodes V representing the terminal and
intersection points of the streets and the set of edges E
containing straight segments which represent streets and
connect the nodes. One-way streets can be modelled by
introducing directed edges into the graph G. For cases, in
which a graph representation of the road network is not
available, we discuss some strategies on how to extract
such a connection graph in Section 5.

Before the calculation of the camera path can be initi-
ated, the user has to specify the travelling destination the
camera should move to (see Section 4). The current posi-
tion of the camera is assumed as the default start position.
Neither the current position of the camera nor the travel-
ling destination of the camera has to lie on an edge or a
node of the graph G. Based on the travelling destination
end and the current position of the camera further denoted
as start, there are different approaches for calculating the
camera path. We have decided to use the shortest path
from start to end with respect to the underlying graph G.
To determine the shortest path the A* algorithm is a good
choice; it exploits topological properties to calculate for an
initial node vstart ∈ V the distances to the destination node

Figure 2: Schematic view of a camera path in the repre-
senting road network. The road network is colored blue,
while the white shows the calculated camera path.

vend ∈ V . Depending on the size of G it may be favorable to
use a more complex algorithm, as the one proposed by Lau-
ther in 2004 [9]. A good although not up-to-date evaluation
of shortest path algorithms based on real road networks has
been conducted by Zhan et al. in 1998 [21].

Furthermore, as an extension to calculating the shortest
path in some cases it can be useful to incorporate additional
information for wayfinding. For instance, one could exploit
the location of certain landmarks within a tourist informa-
tion system. Thus it would be possible to include locations
of interest into the camera path if the shortest path would
run nearby. Another extension could calculate the fastest
path by incorporating speed limits or size of streets and
first guiding the camera to the nearest main street before
proceeding from there. However, in our implementation we
use the shortest path form vstart to vend as the camera path.
To obtain vstart and vend one can simply choose the nodes
nearest to start and end. Then the calculated camera path
runs from start to the location of vstart through the short-
est path to the location of vend and finally to end. This is
illustrated in Figure 2 where the road network graph G is
represented by the blue lines and dots, and the calculated
camera path from start to end is indicated by the white
curve.

Another strategy to get from start into the road network
resp. from the road network to end is to drop a perpendic-
ular from start to the nearest e ∈ E resp. from the nearest
e ∈ E to end. This is particularly favorable in cases where
for instance vstart is located in the opposite direction than
the travelling will occur.

An exception, where both strategies are not appropriate
are the cases where start is closer to end than to any node
of V . In this case we directly calculate the camera path
without considering the graph G.

Based on the calculated camera path, which is a pro-
jection to the ground plane, a smooth camera motion can



be performed. As mentioned above, we have chosen the
river analogy introduced by Galyean [7]. Instead of giv-
ing the user free rein, the river analogy moves the camera
along a predefined camera path, which in our case is de-
fined by the road network. Additionally, the river analogy
controls the speed of movement by adapting acceleration
and deceleration when passing curves. In our application
we always orient the camera in a way that the look-at-
vector is collinear to the tangent vector of the road net-
work at the current position heading towards the direction
of movement. In analogy to driving with a car through the
city this ensures that the camera is always aligned with the
travelling direction. However, when applying this strategy
for orienting the camera, the road network incorporates a
problem when smooth camera motions are desired. Since
all streets are represented as straight line segments, which
meet in the intersections stored in the nodes of the graph
G, a turn is needed at each intersection. When using an
unmodified camera path derived from the graph G there are
two options to perform this turn. The first one is to stop
the camera movement at an encountered intersection and
to perform a smooth rotation. The second option is to not
use a continuous rotation but simply reorient the camera
from one frame to the next. Since this technique incorpo-
rates a loss of frame to frame coherence it will likely lead to
disorientation. Besides, it should be obvious that none of
these techniques match the movement one would perform
when travelling on roads through a real city. Therefore we
slightly modify the path derived from the graph G to allow
smooth motions and natural camera movement through the
3D city model. This modification is performed by introduc-
ing curves at the intersection points along the camera path.
In our implementation we use beziér curves to improve the
camera behavior at the intersection points. To include such
a beziér curve we reduce the length of each road segment
and introduce the control points of the beziér curve. Thus,
the curve is given by three points: one endpoint from the
incoming road segment, one point centered on the inter-
section and one startpoint of the outgoing road segment.
These included beziér curves ensure that neither the cam-
era stops at the intersection to turn into the direction of
travelling nor an abrupt turn is noticed by the user. It is
important that only short parts of the segments meeting
at an intersection are replaced by a curve, because when
longer parts would be replaced this could lead to camera
collisions with buildings near the intersection. If the width
of roads is available for a 3D city model, this information
could be exploited to determine an appropriate degree of
curvature and thus the length of the segment parts replaced
by a curve.

When the camera moves along this modified camera path
the speed can be adapted in curves as described in [7]. Fur-
thermore, we have applied an acceleration phase at the be-
ginning and a deceleration phase at the end of the camera
movement. Because we always want the camera to be ori-
ented in a way that the look-at-vector is directed in the
direction of movement we have introduced a continuous ro-
tation at the very beginning of the movement process.

So far we have only considered 2 DoF movement of the
camera with respect to the ground plane, i.e., the altitude
of the camera is not altered. Although in some cases it does
not relate to real world travelling with a car it may be de-
sirable to change the altitude of the camera as well. There-
fore similar to the navigation metaphor proposed in [19]
we change the altitude of the camera in relation to the
total length of the camera path to travel, i.e., longer dis-

Figure 3: Adaption of the camera altitude based on the
length of the computed camera path.

tances result in higher camera positions (see Figure 3). It
shall be pointed out, that only the altitude of the camera
is changed, but the projection of the path onto the ground
plane remains unchanged. Thus, the user gets a better over-
all impression when travelling long distances. As shown in
Figure 3 it is helpful to introduce a maximum travel height
when using this strategy.

4. The User Interface

Before the system can compute a camera path the user has
to specify the travelling destination he wants to navigate
to. As mentioned in Section 2 we have combined the WIM
metaphor resp. the 2D map metaphor with the click and fly
metaphor to provide an intuitive interface for the user. Al-
though the same functionality is required for both desktop-
based and projection-based VR environments, a different
interaction technique is needed since the used input devices
have different properties. For desktop-based VR environ-
ments we have to provide an interface which is accessible
by using the mouse, while in a projection-based environ-
ment the user usually interacts with a 6 DoF input device,
e.g., glove or wand. For desktop-based VR environments
we display the WIM model as a screen aligned head-up dis-
play (HuD) which is always visualized on top of the scene
content (see Figure 4(a)). The user can specify the des-
tination he wants to navigate to by simply clicking at an
arbitrary point on the HuD using the mouse. When the
mouse button is released, the current mouse coordinates
are used to calculate the corresponding location within the
3D city model, and the camera path calculation is initiated.

In projection-based VR environments where 6 DoF
input devices are used it is not appropriate to display
the WIM model screen aligned, which is only optimal
for 2D interactions. Instead we project the WIM model
onto a transparent prop, which is tracked by our optical
tracking system. This prop is controlled by the user’s
non-dominant hand, while the tracked 6 DoF input device
can be controlled with the dominant hand to specify
the travelling destination by pointing to the prop. In
Figure 4(b) the prop is shown, when using with a 2D
map metaphor. Since the input device has no special
trigger that could be used to specify the destination we
utilize topological information to initiate the navigation.
Therefore we compare the position of the prop and the
position of the input device; in cases where the tip of the
input device is near enough to the plane given by the
prop we assume that the user wants to start navigating.
Besides the intuitive usage the prop also serves tactile
feedback, which is an important cue for VR interaction
techniques. In both environments, desktop-based as well



(a) User interface for desktop-based VR environments.
The HuD can be accessed by using the mouse to change
the camera’s position and orientation.

(b) User interface for projection-based VR environ-
ments. The input device can be used to specify the
destination while the view direction of the tracked
glasses is mapped to the look-at-vector.

Figure 4: Two different user interfaces for accessing the presented navigation technique.

as projection-based, the current position and orientation
of the camera is indicated by visualizing an arrow on top
of the WIM view.

Although the proposed navigation metaphor has been
designed to support road-based navigation, we still want
to support examination of the local area surrounding the
user’s current location, which can be done by changing the
orientation of the camera. Thus, the user is able to view
his surroundings from different camera angles. While in
desktop-based VR environments the superimposed arrow
visualizing the camera can be turned to allow this orienta-
tion, we need a different concept for the projection-based
VR environments. As it can be seen in Figure 4(b) the user
wears a pair of tracked shutter glasses, which allows us to
calculate his current heads position. We simply map this
position to the virtual camera to support orientation of the
camera and thus local scene examination.

With the exception of the previously discussed issues the
described navigation widget is the same for desktop-based
and projection-based VR environments. In the following
subsection we will explain how the visualization of this wid-
get further supports the user during navigation.

The Navigation Widget

The navigation widget visualizes the WIM model of the 3D
city model to support the user when specifying the desti-
nation he wants to navigate to. To reduce the amount of
geometry needed to be sent down the rendering pipeline,
instead of visualizing the down-scaled 3D city model we
use a resized version of the aerial photograph to serve as a
generalized WIM model (see Figure 5). Alternatively one
could use a street-map of the city for visualizing the WIM
model.

Besides the aerial photograph we visualize the current
camera position and orientation as well as the camera path
within the navigation widget. As mentioned above and
shown in Figure 5, the camera position and its orientation
is indicated by an arrow superimposed onto the aerial pho-
tograph. The dotted polyline visualizes the current camera
path to give the user a better orientation by recognizing

the path.

Figure 5: Navigation widget showing the current camera
position and orientation as well as the camera path.

5. Extraction of Road Networks from
Cadastral Data

For many 3D city models the road network is already dig-
itally encoded, e.g., as part of a GPS navigation software.
In cases where the road network for a given 3D city model
is not accessible, there are different options to automat-
ically extract the needed information. There are mainly
two strategies, one could either use computational geome-
try algorithms or image processing algorithms. The former
strategy can be applied only if appropriate geometric infor-
mation for the streets is present, e.g., cadastral data.

If no geometric specification of the streets is available,
one can try to extract the road network information by ap-
plying image processing algorithms. In the following an im-
age processing approach is outlined which uses the midline
extraction algorithm proposed by Rothaus and Jiang [13].
This algorithm calculates gradient images to extract con-



(a) Aerial photograph of the city center of Münster. (b) Black and white rendering of the cadastral road layers of the
same area.

(c) Gradient image created by the midline extraction algorithm. (d) The extracted midlines superimposed on the road layer ren-
dering with color-encoded tangents.

Figure 6: Extraction of road network information for the city of Münster.

tinuous midlines by still preserving thin structures such as
small streets. Although it may be possible to extract the
desired information from an aerial photograph, to obtain
optimal results, this algorithm needs input images having a
reasonable contrast between the background and the struc-
tures for which the midline should be extracted. For the
city of Münster we were able to extract only those vector
layers from the cadastral data which represent traffic ar-
eas. The extraction process is illustrated in Figure 6, where
Figure 6(a) shows the aerial photograph, Figure 6(b) shows
the representation of the road network. In Figure 6(c) the
gradient, which has been constructed by the midline algo-
rithm is shown and Figure 6(d) shows the extracted mid-
lines superimposed on the road network, with the tangent
direction encoded by color. As shown in Figure 6(b) we
have rendered the cadastral layers containing the traffic ar-
eas black on a white background to get an optimal result.
After applying the midline extraction algorithm to this im-
age, we have obtained a sufficient midline representation of
the road network, which is shown in Figure 6(d) where the
midlines have been superimposed on the rendering of the
cadastral layers. Although for some street intersections the
midlines are not continuous this algorithm provides a good
result for subsequent graph extraction, because the color
encoded tangents simplify the search for connecting street
segments.

Alternatively one could use the technique proposed by
Ali et al. [1], which originally has been invented to calculate
anchor points for label layout. They have developed a two-
pass algorithm which computes for every pixel the distance
to the closest segment boundary and stores these values in
a distance image. Based on this information the skeleton

can be extracted.

6. Concluding Remarks

In this paper we have presented a constrained naviga-
tion metaphor, which supports improved navigation for
exploring 3D city models in virtual environments. The
proposed metaphor is applicable in desktop-based as well
as projection-based VR environments and can be accessed
through an intuitive and easy to use interface, which
allows simple point and click navigation. When the user
has specified the travelling destination the shortest path
from the current position to the destination is computed.
Since this computation involves the road network of the
underlying 3D city model, a very natural navigation is
ensured, since the camera moves along roads, and the user
experiences similar views as when exploring the city by
car or by foot. By adapting the topographic map concept
to the user interface, even users with only a little or even
no experience with VR environments are able to navigate
easily through 3D city models by using the proposed
metaphor.

Although our application in both desktop-based and
projection-based VR environments has shown a high po-
tential of the proposed navigation metaphor, we will have
to conduct a user study to perform a detailed evaluation.
Furthermore, different algorithms can be developed for road
network extraction. Besides the image processing approach
some geometric algorithms may be sufficient for our pur-
pose. Another alternative to provide an appropriate road
network is the reuse of geo-data found in navigation sys-



tems. This data is available for almost every city and can
be easily processed to be usable with the presented naviga-
tion metaphor.

In addition, it may be reasonable to adapt the used path-
finding algorithm. In contrast to the shortest path, one
could compute a path which involves certain landmarks.
Thus, it would be possible to compute camera paths, which
would include these landmarks in cases where the shortest
path would lead near by. This may be particularly expe-
dient for tourist information systems, where the landmarks
are of main interest. Furthermore, the presented concepts
can be easily extended to support one-way streets or no-go
areas by simply adapting the underlying graph structure
which represents the road network.

In addition to the intuitive as well as natural usage of the
proposed navigation metaphor, it has a major advantage
when exploring large scale urban environments. Because
of the high polygon count of these environments special
techniques are required to allow visualization at interactive
frame rates. When using our navigation metaphor the cal-
culated camera path can be exploited to perform a caching
of those graphics objects, which lie along this camera path
to improve rendering performance. Since in general the user
does not stop the camera during movement or specifies a
new travelling destination, the rendering performance ben-
efits from this approach. In the future it has to be figured
out, how additional information can be used to enhance this
caching, e.g., if it is helpful to remain the buildings along
certain streets inside the graphics cache.

7. Acknowledgments

We thank Kai Rothaus for providing us an implementation
of the midline extraction algorithm. Furthermore, we would
like to acknowledge the city planing department as well as
the cadastral department of the city of Münster for provid-
ing the datasets of the city of Münster. We also would like
to thank the students, who have implemented many parts
of the visualization software shown in Figure 4.

References

[1] Kamran Ali, Knut Hartmann, and Thomas Strothotte.
Label Layout for Interactive 3D Illustrations. In
Journal of the 13th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and
Computer Vision (WSCG ’05), pages 1–8. Union
Agency, 2005.

[2] Doug A. Bowman, David Koller, and Larry F. Hodges.
Travel in Immersive Virtual Environments: An Evalu-
ation of Viewpoint Motion Control Techniques. In Pro-
ceedings of the Virtual Reality Annual International
Symposium (VRAIS ’97), pages 45–52, Washington,
DC, USA, 1997. IEEE Computer Society.

[3] Doug A. Bowman, David Koller, and Larry F. Hodges.
3D User Interface Design. In Course Notes of the
27nd Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’00). ACM Press,
2000.

[4] Jürgen Döllner. Constraints as Means of Control-
ling Usage of Geovirtual Environments. In Cartog-
raphy and Geographic Information Science, pages 69–

80. Cartography and Geographic Information Society,
2005.

[5] Steven M. Drucker and David Zeltzer. CamDroid:
A System for Implementing Intelligent Camera Con-
trol. In Proceedings of the Symposium on Interactive
3D Graphics (SI3D ’95), pages 139–144. ACM Press,
1995.

[6] Sven Fuhrmann and Alan M. MacEachren. Navigation
in Desktop Geovirtual Environments: Usability As-
sessment. In Proceedings 20th ICA/ACI International
Cartographic Conference, pages 2444–2453, 2001.

[7] Tinsley A. Galyean. Guided Navigation of Virtual En-
vironments. In Proceedings of the Symposium on Inter-
active 3D Graphics (SI3D ’95), pages 103–105. ACM
Press, 1995.

[8] Andrew J. Hanson, Eric A. Wernert, and Stephen B.
Hughes. Constrained Navigation Environments. In
Dagstuhl ’97, Scientific Visualization, pages 95–104.
IEEE Computer Society, 1999.

[9] Ulrich Lauther. An Extremely Fast, Exact Algorithm
for Finding Shortest Paths in Static Networks with
Geographical Background. In GI-Days 2004, pages
219–230. IfGI prints, 2004.

[10] Mark R. Mine. Virtual Environment Interaction Tech-
niques. Technical Report TR95-018, University of
North Carolina at Chapel Hill, April 1995.

[11] Randy Pausch, Tommy Burnette, Dan Brockway, and
Michael E. Weiblen. Navigation and locomotion in
virtual worlds via flight into hand-held miniatures.
In Proceedings of the 22nd Annual Conference on
Computer Graphics and Interactive Techniques (SIG-
GRAPH ’95), pages 399–400. ACM Press, 1995.

[12] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst,
and Tadao Ichikawa. The Go-Go Interaction Tech-
nique: Non-Linear Mapping for Direct Manipulation
in VR. In Proceedings of the ACM Symposium on User
Interface Software and Technology, pages 79–80, 1996.

[13] Kai Rothaus and Xiaoyi Jiang. Multi-Scale Midline
Extraction Using Creaseness. In Proceedings of the
3rd International Conference on Advances in Pattern
Recognition (ICAPR05), 2005.

[14] Brian Salomon, Maxim Garber, Ming C. Lin, and Di-
nesh Manocha. Interactive Navigation in Complex En-
vironments Using Path Planning. In Proceedings of
the Symposium on Interactive 3D Graphics (SI3D ’03),
pages 41–50. ACM Press, 2003.

[15] Dieter Schmalstieg, L. Miguel Encarnacao, and Zsolt
Szalavári. Using Transparent Props for Interaction
with the Virtual Table. In Proceedings of the Sym-
posium on Interactive 3D Graphics (SI3D ’99), pages
147–153. ACM Press, 1999.

[16] Richard Stoakley, Matthew J. Conway, and Randy
Pausch. Virtual Reality on a WIM: Interactive
Worlds in Miniature. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Sys-
tems (CHI ’95), pages 265–272. ACM Press/Addison-
Wesley Publishing Co., 1995.



[17] Stanislav L. Stoev and Dieter Schmalstieg. Application
and Taxonomy of Through-The-Lens Techniques. In
Proceedings of the ACM Symposium on Virtual Real-
ity Software and Technology (VRST ’02), pages 57–64.
ACM Press, 2002.

[18] Zsolt Szalavári and Michael Gervautz. The Per-
sonal Interaction Panel — A Two-Handed Interface
for Augmented Reality. Computer Graphics Forum,
16(3):335–346, 1997.

[19] Desney S. Tan, George G. Robertson, and Mary Czer-
winski. Exploring 3D Navigation: Combining Speed-
Coupled Flying with Orbiting. In Proceedings of the

SIGCHI Conference on Human Factors in Computing
Systems (CHI ’01), pages 418–425. ACM Press, 2001.

[20] Colin Ware and Steven Osborne. Exploration and Vir-
tual Camera Control in Virtual Three Dimensional En-
vironments. In Proceedings of the Symposium on Inter-
active 3D Graphics (SI3D ’90), pages 175–183. ACM
Press, 1990.

[21] F. Benjamin Zhan and Charles E. Noon. Shortest
Path Algorithms: An Evaluation Using Real Road
Networks. Transportation Science, 32(1):65–73, 1998.


