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Abstract

Cable robots or wire driven robots possess many advan-
tages that makes them very well suited to be used as haptic
interfaces. They exhibit very low inertia and very low
friction because of their very light mechanical structure.
The use of cables, however, leads to an under-constrained
system which shows complex properties. The main
drawback is the difficulty to estimate the useful workspace,
and the maximum tension in the cables, as the relation
between the maximum force at the tip of the interface
and the maximum tension in the cables can not be easily
established. In this paper we present a method to calculate
these tensions in a given workspace and to estimate what
we have called “the tension capable workspace” for a 3
cables 2 d.o.f (degree of freedom) planar haptic interface
and for a 4 cables 2 d.o.f. one.

Keywords: Haptic interface, cable robot, redundant par-
allel robot,“Tension capable workspace”.

1. Introduction

Cable or wire driven robots present many advantages:

• a very low structure weight, thus a very low inertia

• a high rigidity

• a potentially very large workspace as there is no inter-
nal mechanical structure to limit the movement of the
end effector

These advantages are the main qualities expected for an
haptic interface and some interfaces of this kind have al-
ready been built [2]. An example is the “Spidar” which
is a 3 d.o.f (degree of freedom), 4 cables haptic interface,
and its derivated configurations: the Spidar-G, the Spidar-
8, and the wereable version called “hapticgear” [6]. The
Laboratory of Automation and Robotics of the University
of Bologna has also designed a wearable wire driven haptic
interface called “VIDET” which is similar to the previous
one [1].
However, the design of such haptic interfaces is difficult
as it is not easy to establish a relation between the max-
imum force at the tip of the robot and the maximal ten-
sion in the cables. Some previous work has already been
done to measure the performance of the wire actuated ma-
nipulators by the extension of manipulability ellipsoids or
dexterity indices which are commonly used in the robotic
theory. Krutz and Hayward [3] define dexterity measures
based on the calculation of the maximum output force in

the n+1 case, and Y. Shen and al.[9] introduce manipu-
lability indices by calculating the volume of the ellipsoid
defined by F T GGT F ≤ 1. But the problem of finding the
maximum tension for a given maximum output force in a
given workspace, especially in the hyper redundant case (m
≥ n+2) remain still quite unexplored
In this paper we present a preliminary theoretical work
done in order to answer this problem.
Firstly, we will remind the existing theory for the deter-
mination of the tensions in the cable and the calculation
of the singularity free workspace. Secondly, we propose a
new method to calculate the maximum tension in a cable
for any output force, in any point of the workspace; and
deduce what have called the “Tension Capable Workspace”
defined as the workspace where the tension in the cables is
less than a chosen maximum value.

2. General static model for cable robots

Figure 1: Diagram of a general cable driven haptic interface

Let’s introduce the different parameters needed to define
the static model of any kind of cable driven manipulators
as schematized in fig 1:

• Ai: the connection point of the cable i to the motor
mi,

• Pi: the connection point of the cable i to the end ef-
fector,

• P : the center of the end effector,

• li = || ~AiPi||: the length of the cable i,

• ~ui: the unit vector along cable i,



• ~δi: the unit momentum vector around Pi, ~δi = ~PPi ∧
~ui,

• G =

 
~u1 . . . ~ui . . . ~um

~δ1 . . . ~δi . . . ~δm

!
= [g1, . . . gn],

• θij = (~ui, ~uj),

• ti : the tension in the cable i,

• ~Fout and ~Mout
P : the output force vector and momen-

tum on the end effector expressed at P,

• n the number of d.o.f. of the interface.

i ∈ [1,m] where m is the number of cables. Theoretical
studies have shown that m must be superior or equal to
the number of d.o.f +1 (m ≥ n + 1) [5].
All the coordinates of the different points are expressed in

the base frame R0(O,~i,~j,~k) which is assumed to be Galilean.

The equilibrium of the end effector gives:

~Fout =

mX
i=1

ti ~ui and ~Mout
P =

mX
i=1

ti
~δi (1)

also expressed by:
FP = GT (2)

where : FP = [~Fout, ~Mout
P ]t, T = [t1, . . . , ti, . . . , tm]t

T is a m by 1 vector and G is a n by m matrix

2.1. Calculation of the tension in the cables for

a given output force

2.1.1. First approach: Use of the Kernel

This approach has been widely used and explained ([4], [8]).
It is based on the use of the pseudo inverse of G and the
addition of the kernel to be able to have positive tensions
in the cables.
As the matrix G is not square, G−1 can not be calculated.
To compute the tension in the cables, we use the Moore-
Penrose pseudo inverse G+ = Gt(GGt)−1:

T = G+
FP (3)

The use of the pseudo inverse enables us to find a solution
that minimizes the norm of T. However the use of cables
involves that each tension must be positive, otherwise the
cables would slack. Unfortunately, the vector T previously
found may have one or more of its component negative. In
order to render all its components positive or equal to the
minimum tension (tmin) without adding any extra force at
the end effector, a solution is to add the kernel of G (KG)
multiplied by a constant α (which will be a scalar or a
vector, depending of the dimension of the kernel). Thus we
obtain :

T = G+
FP| {z }

~tf

+αKG (4)

When the number of cables is equal to the number of
d.o.f+1, KG is a vector and the parameter α is a scalar
easily determined by:

α = max
i

(
tmin − tf i

KGi

) (5)

2.1.2. Second approach: Calculation of the tension
in the cable with the use of a reduced matrix

The first approach is wildly known and used, but it’s quite
time consuming because of the time taken for the calcula-
tion of G+ and the elements of the kernel of G. In order
to speed up the calculations, we have chosen to develop
an other approach. For every point and any direction of
the output force, outside singular configurations we can as-
sume that we will be able to find at least a set Sk of n cables
where the tension is strictly positive, k ∈ [1, Cn

m] as there
is Cn

m = m!
(m−n)!n!

possible choices of Sk.The tension in the

p = m − n cables left will be assumed to be tmin. This
can be easily demonstrated for a 2 d.o.f., 3 cables planar
translational interface.

Figure 2: 2 d.o.f, 3 cables planar interface

For P inside A1A2A3, and for any direction of ~Fout (see

fig 2), ~Fout will always be “inside” two cables which angle is
less tan π. It is then always possible to find a set of positive

tensions along two cables which vectorial sum gives ~Fout.
The same demonstration can be done for the case of a 3
d.o.f., 4 cables translational interface considering that ~Fout

will always be inside the pyramid formed by three of the
four cables, for a carefully chosen workspace.
We have to solve a fully constrained system using n cables.
To be able to find the right solution, we need to form all
possible reduced systems and evaluate the corresponding
values of the tensions in the cables . The solution which
gives the lowest strictly positive tensions is the good solu-
tion.
Let’s number the cables of the set Sk from c1 to cn

1. We
define fk the function which gives the relation between the
number of the cable ci in Sk and the general number of the
cable j.

ci
fk−→ j

[1, m] [1, m]

The tension will be tmin in the p cables cn+1 to
cm,{c1, . . . , cm} ∈ [1, m]m.

1By extension, we will also write Sk = {c1, . . . , cn}



We will have, for det(GSk
red) 6= 0:

[tcn+1 , . . . , tcm ]T = tmin

G
Sk
red = [gc1 , . . . ,gcn ]

⇔ [tc1 , . . . , tcn ]T = G
Sk
red

−1
F

∗
p

With F∗
P = FP − tmin

Pcm

k=cn+1
~uk

The tensions are then obtained by solving the previous
Cramer system (6). Let’s write:

A(F )Sk
cr

= [gc1 , . . . , F
∗
P|{z}

row cr

, . . . , gcn ]

So: 8><>: tSk
cr

=
|A(F )Sk

cr
|

|G
Sk

red|
∀r ∈ [1, n]

tSk
cr

=tmin ∀r ∈ [n + 1, m]

(6)

This calculation has to be done for the Cn
m possible choices

of Sk, and the solution adopted will be the one with the
lowest strictly positive tensions. Let’s Sg be this set. The
tension ti can be expressed by the following equation:

ti = t
Sg

i =

8><>: |A(F )
Sg

i |

|G
Sg

red|
∀i ∈ Sg

tmin ∀i /∈ Sg

(7)

2.1.3. Comparison of the two approaches

The two approaches have been compared with the example
explained in 3.2.2 in terms of calculation’s time. Because of
redundancy, the first approach need the use of a quadratic
algorithm to find λ with is a 2 by 1 vector. We find the
following calculation’s times (Tabular 1) for 15x16 points of

simulation and 15 orientations of ~Fout on each point. This

First Approach Our Approach
0,0131s 5, 69.10−4s

Table 1: Calculation’s time for the two approaches

comparison between the two calculation’s times is obviously
linked to the example we have chosen. Further work has
to been done to investigate the benefits of our approach in
the general case.

2.2. Theoretic Workspace Analysis

The theoretical workspace (Wth) can be defined as the
space where it is possible to find a positive tension in all
cables to equilibrate the end effector for any force applied
to it. This is possible :

• first, if the rank of G is equal to number of d.o.f of the
robot [9],[7] (or when the rank of the kernel is equal
to the difference between the number of cables and
the number of d.o.f). For a under constrained point
mass cable robot (m=n+1), the rank of the matrix G
is less than the number of d.o.f when two cables are
aligned or when three cables are in the same plane.
The “singularity lines” are the lines crossing the points
of connection of the cables.

• second, if the kernel is “cooperative”. The kernel is
said to be “cooperative”when all its components are
strictly positive.

So the theoretical workspace will be the space between the
previous boundaries where the kernel is cooperative. As
demonstrated by Lafourcade for m=n+1 [4], Wth is the
inside convex hyper-polyhedron formed by the cables con-
nection points.
If we use the second approach, for m=n+1, this is also
possible if we are able to find n cables among m . This is
possible for any direction of the output force, if the matrices
formed any set of n cables have their ranks equal to n. Any
reduced matrix will lose its rank when one of the vector ~ui

is a linear combination on the n-1 other ones, i.e two cables
are aligned or three cables are in the same plane. The in-
side polyhedron is then the place where the solution found
by the use of the second approach will always be positive.

2.3. First conclusions on the design of cable hap-

tic interfaces

To design such interface, the designer will have to care-
fully choose the architecture (i.e the position of the con-
nection points of the cables Ai), in order to have the de-
sired workspace (Wpr) included in the previous defined
workspace Wth. The best choice would be to have the
boundaries of Wpr as far as possible from the boundaries
of Wth as the tensions in the cables increase when P gets
closer to the boundaries of Wth . A possible way to increase
Wth without increasing the size of the interface is to add
more motors. We then modify the shape of Wth as shown
in the following example (fig. 3)

Figure 3: Two possible theoretical workspaces buy the use
of 3 or 4 motors for a 2 d.o.f. planar interface

Using cables c2, c3, c5 define the triangle A2, A3, A5 as
Wth , but using using cables c1, c2, c3, c4 define the square
A1, A2, A3, A4 as Wth, witch is much larger.

3. Calculation of the maximum tension

in a given workspace

3.1. Introduction

In a first step in the design process, a workspace is chosen
with respect to ergonomic studies, and a maximum out-
put force and momentum FM expected on P is defined. To
choose the actuators we need to know the value of the max-
imum tension in (Wpr) for ||FP || ≤ FM .A first approach
would be, for each point of (Wpr) and for every possible
configurations of the output force, to compute the tension
in each cable and then to get the maximum tension. Even



if the calculation time is quite small, it would take hours
to get the solution. Moreover, it is not possible to warrant
that the worst case is obtained as all the possible config-
urations are not explored. That why we propose a new
approach. To be able to find the simplest analytical so-
lutions we have assumed in this section that tmin is small
enough to be considered as null.

3.2. Calculation of the maximum tension

Let’s write:

• G = [gij ], i ∈ [1, n], j ∈ [1, m]

• FP = [FP 1, . . . ,FP n]t

Let’s calculate |A(F )Sk
cr

| = ∆
Sk
cr (FP ) by developing it

following the cr column

∆
Sk
cr

(FP ) =

�������� g1c1
. . . g1cr−1

FP 1 g1cr+1
. . . g1cn

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

gnc1
. . . gncr−1

FP n gncr+1
. . . gncn

��������
= FP 1(−1)

i+cr

�������� g2c1
. . . g2cr−1

g2cr+1
. . . g2cn

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

gnc1
. . . gncr−1

gncr+1
. . . gncn

��������| {z }
∆

Sk
n−1

(1,cr)

+ . . . + (−1)
n+cr ∆

Sk
n−1(n, cr) =

nX
i=1

FP i(−1)
i+cr ∆

Sk
n−1(i, cr)

(8)

Thus :

t
Sk
cr

=
F∗

P
~∆

Sk
n−1(cr)

∆
Sk
n

~∆
Sk
n−1(cr) =[(−1)

1+cr ∆
Sk
n−1(1, cr), . . . , (−1)

n+cr ∆
Sk
n−1(n, cr)]

t

(9)

The maximum of t
Sk
cr will be obtained by finding the

upper bound of the numerator:

tSk
cr

≤
||F∗

P ||||~∆
Sk
n−1(cr)||

∆
Sk
n

(10)

For tmin ≈ 0, we will have ||F∗
P || ≈ ||FP || = FM , so we can

write :

tSk
cr

≤
FM ||~∆

Sk
n−1(cr)||

∆Sk
n

(11)

To obtain the maximum on the cable i, we need to test
all the possible sets of cables Sk including cable i. Let’s

Sr
k(i) be those cables sets, there are Cn−1

m−1 = (m−1)!
(n−1)!(m−n)!

of them, so for r ∈ [1, Cn−1
m−1] :

timax ≈ FM max
r∈[1,C

n−1
m−1]

qPn

j=1(∆
Sr

k
(i)

n−1 (j, f−1
k (i)))2

∆
Sr

k
(i)

n

(12)

We finally have an expression of the maximum of the ten-
sion in each cable which is only linked to the norm of FP

and the elements of the matrix G .

3.2.1. 2 d.o.f, 3 cables planar interface

In this example we have p=1 et m=3. Using the second
approach for the calculation of the tension in the cables
gives:

S1 = {1, 2}, c1 = 1, c2 = 2, c3 = 3, c4 = 4, GS1
red = [ ~u1, ~u2]

S2 = {2, 3}, c1 = 2, c2 = 3, c3 = 1, c4 = 4, GS2
red = [ ~u2, ~u3]

S3 = {1, 3}, c1 = 1, c2 = 3, c3 = 2, c4 = 4, GS3
red = [ ~u1, ~u3]

The expression of tSk
i can be simplified as follow:

t
Sk
i =

| ~Fout, ~uj |

|~ui, ~uj |

�����
j∈Sk,j 6=i

(13)

So the maximum of ti will be

tmax
i = max

j={[1,3]−i}

(
|~ui, ~Fout|

|~ui, ~uj |

)
= max

j={[1,3]−i}

(
sin(~ui, ~Fout)|| ~Fout||

sin θij

)
Let’s write ~Fout = FM ~uF

⇒ tmax
i = max

j={[1,3]−i}

�
| sin(~ui, ~uF )|FM

sin θij

�
= max

j={[1,3]−i}

�
FM

sin θij

� (14)

For example :

tmax
1 = max

�
FM

sin θ12
,

FM

sin θ13

�
(15)

3.2.2. 2 d.o.f, 4 cables planar interface

In this example we have p=2 et m=4.
Using the second approach for the calculation of the tension
in the cables gives:

S1 = {1, 2}, c1 = 1, c2 = 2, c3 = 3, c4 = 4, GS1
red = [ ~u1, ~u2]

S2 = {2, 3}, c1 = 2, c2 = 3, c3 = 1, c4 = 4, GS2
red = [ ~u2, ~u3]

S3 = {3, 4}, c1 = 3, c2 = 4, c3 = 1, c4 = 2, GS3
red = [ ~u3, ~u4]

S4 = {4, 1}, c1 = 4, c2 = 1, c3 = 2, c4 = 3, GS4
red = [ ~u4, ~u1]

S5 = {1, 3}, c1 = 1, c2 = 3, c3 = 2, c4 = 4, GS5
red = [ ~u1, ~u3]

S6 = {2, 4}, c1 = 2, c2 = 4, c3 = 2, c4 = 3, GS6
red = [ ~u2, ~u4]

The expression of t
Sk
i is then:

tSk
i =

| ~Fout, ~uj |

|~ui, ~uj |

�����
j∈Sk,j 6=i

(16)

So the maximum of ti will be

⇒ tmax
i = max

j={[1,4]−i}

�
FM

sin θij

�
(17)
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Figure 4: Drawing of the lines of equal first maximum ten-
sion on the four cables in the theoretic workspace for an
output force of 10 N
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Figure 5: Drawing of the lines of equal second maximum
tension on the four cables in the theoretic workspace for an
output force of 10 N

In this example, because of the redundancy, the approach
has to be modified. Indeed if we use relation 17, we will
obtained the following lines of equal maximum tension (fig
4).

This is happening because, with this solution, the maxi-
mum is obtained when two cables are aligned (i.e :| sin θij | =
0), but because of redundancy, we choose, to calculate the
tension in the cables, the minimum of the positive solu-
tions; so this configuration is always rejected. In order to
be able to draw the correct repartition of the tension in the
workspace we have to choose the second maximum tension,
which is smaller. We then obtain the correct drawing of the
lines of equal maximum tension on the four cables

3.2.3. 3 d.o.f, 4 cables spatial interface example

The results previously demonstrated can be extended to
the spatial case. In this example we have p=1 et m=4.
Using the second approach for the calculation of the tension
in the cables gives:

S1 = {1, 2, 3}, c1 = 1, c2 = 2, c3 = 3, c4 = 4, G
S1
red

= [ ~u1, ~u2, ~u3]

S2 = {2, 3, 4}, c1 = 2, c2 = 3, c3 = 1, c4 = 4, G
S2
red

= [ ~u2, ~u3, ~u4]

S3 = {3, 4, 1}, c1 = 3, c2 = 4, c3 = 1, c4 = 2, G
S3
red

= [ ~u3, ~u4, ~u1]

S4 = {4, 1, 2}, c1 = 4, c2 = 1, c3 = 2, c4 = 3, G
S4
red

= [ ~u4, ~u1, ~u2]

The expression of tSk
i obtained with this approach can

be simplified as follow:

t
Sk
i =

| ~Fout, ~uj , ~uk|

|~ui, ~uj , ~uk|

�����
{j,k}∈Sk

2, j 6=k 6=i

So the maximum of ti for a given maximum output force
will be

tmax
i = max

{j,k}∈{[1,4]−i}2, j 6=,k

�
| sin( ~uj , ~uk)|FM

|~ui, ~uj , ~uk|

�
(18)

For example:

t
max
1 = max

� | sin( ~u2, ~u3)|FM

| ~u1, ~u2, ~u3|
,
| sin( ~u3, ~u4)|FM

| ~u1, ~u3, ~u4|
,
| sin( ~u2, ~u4)|FM

| ~u1, ~u2, ~u4|

�
(19)

4. Calculation of the Tension Capable

Workspace

This workspace can be defined as :

P ∈ Wtmax
⇔

�
||FP || < FM

FP = GT, tmin < ti < tmax

�
(20)

The relations between FM and tmax, previously found
gives the equation of the boundaries of Wtmax

4.1. 2 d.o.f, 3 cables interface

Knowing FM and tmax we can deduce from (14) the maxi-
mum possible angle between two cables :

θmax = π − sin−1(
FM

tmax

) (21)

This relation is the equation of three circles which are
going trough two of the three points Ai and a point
M being the third point of a triangle AiAjM in witch

( ~MAi, ~MAj) = θm. So the largest circular workspace is
given by the maximum circle tangent to these previous ones.
A geometrical study gives:

RgT max =
r(1 −

√
3 tan( π−θmax

2 ))

2
(22)

The theoretical results have been compared to those ob-
tained by calculation of the tension in the cables across
1620 points of the theoretical workspace, for 302 different
orientation of a 10 N normed force. As shown on fig 8 the
theoretical boundaries (in blue) perfectly match with the
simulated values of the tension in the cables: the yellow
points, which are the points where the tension in the ca-
bles is less than the chosen value of 10 N, are inside the
calculated boundaries. As expected the maximum circular
workspace (in green) is tangent to the boundaries.

4.2. 3 d.o.f, 4 cables spatial interface

From (19) we can deduce the relation between three angles,
FM and tmax:

Cmax =
FM

tmax

= max
i=1,4
j=1,4
k=1,4
i6=j 6=k

� |( ~ui, ~uj , ~uk)|
|| ~ui ∧ ~uj ||

�
(23)
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Figure 6: The simulated Tension capable workspace (yellow
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The equations of boundaries of Wtmax
are defined by :

|( ~ui, ~uj , ~uk)|
|| ~ui ∧ ~uj ||

=
( ~ui ∧ ~uj) · ~uk

|| ~ui ∧ ~uj ||
= cos( ~nij , ~uk) = Cmax (24)

With ~nij being the unitary vector perpendicular to the
plane formed by the vectors ~ui, ~uj

As there is no simple analytical definition of the surface
generated by the previous equation, we can compute the
definition in order to be able to draw it (fig 7).
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Figure 7: The simulated Tension capable workspace
(green), tmax = 20N , FN = 10N , 9.103 pts of simulation

4.3. 2 d.o.f, 4 cables interface

The previous relation giving the maximum value for θmax

can still be used. It will give the boundaries of Wtmax
of

this interface. The boundaries are then four circles which
are going trough three of the four points Ai and a point
M being the third point of a triangle AiAjM in witch

( ~MAi, ~MAj) = θm. This can be easily seen on the fol-
lowing figure (fig. 8) which is the result of the computation
of the maximum tension calculation in 50*50 points of Wth

for a maximum output of 5 N and a maximum tension of
10 N.

5. Conclusion

In this paper, we have presented three kinds of Completely
Constrained Punctual Cable Robot and explained why and
how they can be used as haptic interfaces. We have devel-
oped two approaches to calculate the maximum tension in
the cables for any given point of a chosen workspace and
for an output force of any direction, for any type of cable
driven haptic interface. Then we have deduced what we
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Figure 8: The simulated Tension capable workspace

called the Tension Capable Workspace, and we have de-
scribed the way to choose the workspace in order to be
able to control the interface in any point for a given set of
motors. Future work will focus on finding an analytic de-
scription of the Tension Capable Workspace in the spatial
case an to extend this method to design a new 3 d.o.f, 4
cables light haptic interface. We will also focus on extend
this method to more complex mechanisms.
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