
Development of R-Cubed Manipulation Language
-Implementation and Evaluation to a RCML System-

Wei-Chung Teng1, Dairoku Sekiguchi1, Akira Nukuzuma2, Naoki Kawakami1,
Yasuyuki Yanagida1, and Susumu Tachi1

1Tachi Laboratory,

School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 JAPAN

{waldo, dairoku, kawakami, yanagida, tachi}@star.t.u-tokyo.ac.jp
2Takatsuki Laboratory, Minolta Co. Ltd.

1-2,Sakura-Machi,takatsuki-Shi, Osaka, 569-8503 JAPAN
nuu@eie.minolta.co.jp

Abstract
R-Cubed (R3: Real-time Remote Robotics) is the concept
and technology which attempts to provide a solution for
people to telexist anywhere in the world by controlling
remote robots as his avatars in real time base through the
network. An R-Cubed system is supposed to allow
people to control remote robots from terminals installed
on homes, offices, or any public booths connected to
Internet or other dedicated networks. As part of R-Cubed
research, we proposed RCML/RCTP structure as a
solution on implementing R-Cubed systems. To examine
and verify practicability of RCML/RCTP structure, we
also implemented an RCML system based on RCML and
RCTP specification on a low-end platform. In this paper
we will show how we implement the experimental system
following the specification of RCML and RCTP.
Observation and evaluation to the system results in some
hints on designing next version of specification and are
discussed in detail.

Key words: Telexistence, R-Cubed, RCML, RCTP,
VRML

1. Introduction
R3 stands for Real-time Remote Robotics [1], is a long-
range project originated by Japanese Ministry of
International Trade and Industry (MITI) in 1995. The
concept of R3 is to construct an infrastructure that
everyone in the society can freely telexist through a
network. In R3 society there would have R-Cubed booths
installed in home, offices, or public places quipped with
teleoperation systems which people can use to control
remote robots as if the robots be his/her avatars. Some
other words such as networked telexistence or networked
robotics are also used to express the concept of R3 [2].
Figure 1 shows the concept of R3 system. In the client-
server systems each robot site includes its local server
system. The robot type varies from a humanoid (high

end) to a movable camera (low end). A virtual robot can
also be a controlling subject, so we can telexist in virtual
worlds as in remote environments.

On the other side, each client has a teleoperation system
ranging from a control cockpit with master manipulators
and a HMD (high end) to an ordinary PC equipped with
mouse and maybe a joystick (low end). In the meantime
real-time data transfer channel is employed to provide a
basis for users and robots to communicate with each
other. That is because only with real-time response can
human retains the sensation of presence.

Towards the realization of R3 concept, we proposed R-
Cubed Manipulation Language (RCML) and R-Cubed

Robots and robotic
devices

Common tele-
operation systems

Dedicated tele-
operation systems

ClientClientClientClient ServerServerServerServer

GUIGUIGUIGUI

N
etw

ork

Fig. 1 An R3 system should supports large scale of

teleoperation systems and robotic devices

ICAT '99

Transfer Protocol (RCTP) as a solution on constructing
R3 systems [3]. The RCML/RCTP approach is designed
from the end-user’s standpoint, keeping “how the users
access the remote real environments” in mind. And on
the early stage our study focuses on implementations on
the low-end systems.

2. Related Works
Although networked telexistence, or networked robotics,
is still a new research field, more and more successful
cases are reported [4-9]. However, some researches aim
on particular purposes such as space work [6] or medical
treatment with dedicated systems that considered not
intuitive to apply on general application. On the other
hand, WWW browser seems to be a possible candidate
for general-purpose networked robotics operation
platform, since many approaches apply WWW browser
to operate remote robots executing simple operations
such as browsing inside building [8][9] or painting [10].
However, the innate characteristics of WWW Browser’s
structure implies problems on constructing a controlling
platform and results the whole system in constrained and
not intuitive structure [3].

On the case of virtual environment, since the VRML 1.0
standard was specified in 1994, the use of VRML has
become the most popular way to construct and access
virtual worlds. VRML 2.0 provides the mechanism on
designing and handling the actions of objects, and has
become an ISO standard known as VRML97 [11]. By
the way, although some implementations show the
possibility on controlling virtual robot modeled with
VRML [12], a standard way to model controllable
mechanism and sensory information is still necessary for
various types of robots.

2. Notes on RCML and RCTP

Before we discuss the experimental implementation, a
brief introduction on the concept and characteristic of the
RCML/RCTP system is showed below.

2.1 Client-Server Architecture

The RCML/RCTP system is of client-server architecture
as R3 system. Server stands for the controlling system
software running at the robot site, and client stands for
the software running at the user's computer.

2.2 Objects
The concept of object is introduced o define the
functional input/output units on the system. According to
their functionality, the objects are grouped into three
categories: system object, input object, and output object.

System objects include server object and client object,
which refer to, in respective, the server and client’s
computer hardware and the RCML/RCTP software
running above it, in the base that only one client can

control the robot at a time.

 Input/output objects can still be classified into five types
according to the type of data they handle: video
input/output object, audio input/output object, control
input/output object, text input/output object, and binary
input/output object. Each type of output object is the
counterpart of corresponding type of input objects.

2.3 Translators
RCML/RCTP system is designed to be applicable for
various types of robots and devices, and the way data
transferred over the network should be standardized and
be independent of the robots and devices connected at
each site. To satisfy this requirement, software modules
called translators are provided to translate the specific-
format data into standard format and vice versa. For
example, the data returned from some 6 DOF position
sensor may contain 6 degrees for 6 joint respectively.
The position data is converted by input translator into
standard format, say coordinate in Cartesian coordinate
system, before it’s transferred to the other site. The
transferred position data would be converted by output
translator of the opposite site again to suite the specific
output device.

An I/O device, when coupled with its translator, is
treated as an input/output object in RCML/RCTP system.
Figure 2 shows the relationship between object,
translator, and device.

2.4 Structure of RCML
The R-Cubed Manipulation Language is designed as a
file format for describing real world or virtual spaces and
for robot characteristics such as degrees of freedom,
control parameters, and sensor information.

Since VRML provides a standard and popular way to
construct interactive three-dimensional objects and
virtual worlds, we adopt VRML97 as the base format to

�������
�������
�������
�������
�������
�������
�������OutputOutput

DeviceDevice

InputInput
TranslatorTranslator

InputInput
DeviceDevice

OperatorOperatorRemote Remote
EnvironmentEnvironment

Client (User) SiteClient (User) SiteServer (Robot) SiteServer (Robot) Site

NetworkNetwork

OutputOutput
TranslatorTranslator

OutputOutput
TranslatorTranslator

InputInput
TranslatorTranslator

InputInput
DeviceDevice

OutputOutput
DeviceDevice

one-to-one mappingone-to-one mapping

Input ObjectInput Object

Input ObjectInput Object

Output ObjectOutput Object

Output ObjectOutput Object

Fig.2 Functional units and information flow in the

RCML/RCTP system

describe remote environments, controlled robots
themselves, and robot characteristics. A typical RCML
file should include two parts: a virtual world, which is
the “copy” of real remote world, written as normal
VRML files, and a RCML-defined PROTO node
containing control parameters and sensory information
description.

The structure of RCML extension nodes is constructed in
the same way with objects. It contains 3 levels with the
RCML_Robot grouping node as the “root” node. System
object nodes and Input / Output object nodes are
contained in RCML_Robot and stand for system objects
and Input / Output objects respectively. Control objects
are classified furthermore into small unit
RCML_ControlInputData or RCML_ControlOutput Data
nodes. Table 1 lists all kinds of nodes and shows their
relationship.

2.5 Phases on RCTP
RCTP is designed to cooperate with RCML. The two
main jobs for RCTP are to negotiate for assigning
effective pairs of input/output devices in robot and user
sites, and to transfer the control commands from user and
status information from robot in real-time.

The process of a RCTP connection is divided into 3
phases. In the beginning the users access some Web
pages describing the information of controlling robots,
and then download the RCML file. RCML browser is
invoked at this time to parse the RCML file. This part is
called the greeting phase.

After the user picks out the controlling objects and
decides the corresponding input device, RCML browser
would try to build a network connection with RCML
server. After connection is established, RCML browser
would request to get the control permission of robot’s
objects. If the requested device is free and functions well,
server will assign a unique ID number to the device and
acknowledge it back with all initial characteristic values
appended. All this process should follow the
specification of HTTP/1.1 [13], and the part is called the
negotiation phase. If negotiation phase completes
smoothly, RCML browser would send the GO method in
order to start the controlling phase. Control messages and
system information transferred in this phase are binary
based and contrived to meet the real-time needs, however
the Video/Audio and other Sensory information are left
to dedicated protocols. This phase is call as Live Session
Phase.

3. Experimental RCML System
To examine and verify practicability of RCML/RCTP
structure, we implemented an RCML system based on
RCML and RCTP specification on a low-end platform.
The structure of the system is shown in Figure 3. On the
server site a direction controllable video camera and a
notebook PC are fixed on the movable robot, where a

PCMCIA wireless LAN card is used to connect the
notebook to the network. For most efficiency we use C
language to code server program. The server program
controls rotation and movement of the robot, and
direction of video camera.

On the client site, the whole client application is
executed on a low-end PC (Pentium MMX 200MHz with
64MB memory) with Joystick and ADL-1 equipped.
ADL-1 is a 6DOF position sensor designed originally for
measuring position and direction of human head,
however we use it as a three-dimensional position input
device. For higher portability, the main body of client
program is written in Java language, with drivers of
physical devices written in C language. The VRML
browser (Sony Community Place Browser) is used to
handle VRML part of the RCML file, and video
conferencing program (CU-SeeMe) is used for video
stream transfer. These helper programs greatly shorten
the development period. How the helper programs
cooperate with RCML client program is showed on
Figure 5. Because RCML is defined as an extension of
VRML, all Java program is linked from VRML file by
Script nodes, by this way we could update VRML world

Table 1. List of Nodes in RCML
Level 1 Node RCML_Robot

System
Object
Node

RCML_Server
RCML_Client

Input
Object
Node

RCML_VideoInput
RCML_AudioInput
RCML_ControlInput
RCML_TextInput
RCML_BinaryInput

Level 2
Node

Output
Object
Node

RCML_VideoOutput
RCML_AudioOutput
RCML_ControlOutput
RCML_TextOutput
RCML_BinaryOutput

RCML_
Control
Input Node

RCML_ControlInputData
Level 3
Node RCML_

Control
Output Node

RCML_ControlOutputData

Client PC

Server Side Client Side

Video Signal

ADL-1

Command to Robot and
Video Camera

Notebook PC

Command

Command

Status

Wireless LAN

Status of Robot &
Video Stream

Joystick

Robot

Fig.3 Hardware structure of the RCML system

synchronized with remote environment.

In this experimental system, RCTP is implemented based

on TCP/IP protocol. On the beginning RCML file and
translators are already in client site’s computer, so the
greeting phase is omitted. However, negotiation phase
and live-session phase is faithfully realized. Users are
asked to pick up his/her favorite input device if the
request for controlling robot is permitted. Some common
GUI, joystick, and ADL-1 are supported in this system,
and they are treated in the same way by RCTP clone.
Table 2 lists all objects in this RCML system. I/O objects
of the same type can be paired up as defined in the
RCML specification.

4. Results
Comparing to approaches using CGI and HTTP, our
system provides flexible and compact structure to handle
continuous command stream that is necessary for R3
system. However, due to narrow bandwidth (2Mbps) of
wireless LAN in the experimental system, time delay
becomes obvious when high quality video stream is
chose. Next version of RCTP should has suitable

mechanism to negotiate how controlling command and
sensory information share the limited bandwidth. During
development period, we also found that VRML grammar
and its Java platform class’s definition did restrict future
extension of RCML. Approach such as XML based
RCML is under consideration.

4. Conclusion
In this paper, some implementation related topics on
RCML and RCTP are picked up and compared to the
experimental system. Practicability of RCML/RCTP
structure is verified as this system treat all kind of input
and output objects the same way by standardize the data
type and format of object. However, further study on
characteristic of user interface is necessary for
constructing general-purpose teleoperation system.

References
1. MITI of Japan, R-Cubed WG ed.: “R-Cubed”,

Nikkan Kogyo Shimbun (1996).

2. S. Tachi: “Real-time Remote Robotics – Toward
Networked Telexistence,” IEEE Computer Graphics
and Applications, pp. 6-9 (1998).

3. W. C. Teng, A. Nukuzuma, N. Kawakami, Y.
Yanagida, and S. Tachi: “Development of R-Cubed
Manipulation Language - The Specification of RCML
and RCTP –,” Proc. of the 8th International
Conference on Artificial Reality and Tele-existence,
pp.156-162 (1998).

4. R. Simmons: “Xavier: An Autonomous Mobile
Robot on The Web,” Preprints of IROS’98 Workshop
‘Robots on the Web’, pp.43-47 (1998).

5. P. Saucy and F. Mondada: “KhepOnTheWeb: One
Year of Access to a Mobile Robot on the Internet,”
Preprints of IROS’98 Workshop ‘Robots on the Web’,
pp.23-29 (1998).

Table 2. Objects in the RCML system
 Server Site Client Site

System Object Server Program Client Program
Video Input

Object
Video Camera

Video Output
Object

 Video conferenc-
ing program

Control Input
Object

 Common GUI
(slider bar, text
field, button, etc.),
Joystick,
ADL-1

Control
Output Object

Direction and
Zooming of
Camera,
Movement and
Direction of
Robot

Fig. 5 Screen of client program with scroll bar and 2D

map input objects

Fig. 4 Photo of the controlling robot

6. Y.Wakita, S. Hirai, K. Machida, K. Ogimoto,
T.Itoko, P. Backes, and S. Peters: “Application of
Intelligent Monitoring for Super Long Distance
Teleoperation,” Proc. Of IROS’96, pp.1031-1037
(1996).

7. A. Kheddar, C. Tzafestas, P. Coiffet, T. Kotoku, S.
Kawabata, K. Iwamoto, K. Tanie, I. Mazon,
C.Laugier, and R. Chellai: “Parallel Multi-Robots
Long Distance Teleoperation,” Proc. of ICAR’97,
pp.1007-1012 (1997).

8. S. B. Goldberg, et al.: “DIGIMUSE: A interactive
telerobotic system for remote viewing of three-
dimensional art objects,” Preprints of IROS’98
Workshop ‘Robots on the Web’, pp.55-59 (1998).

9. S. Maeyama, S. Yuta, A. Harada: “Mobile Robot in
the Remote Museum for Modeling the Evaluation
Structure of KANSEI,” Proc. of 7th IEEE
International Workshop on Robot and Human
Communication, Vol. 1, pp.315-320 (1998).

10. M. R. Stein: “Painting on the World Wide Web: The
PumaPaint Project,” Preprints of IROS’98 Workshop
‘Robots on the Web’, pp.37-42 (1998).

11. http://www.vrml.org/technicalinfo/specifications/vr
ml97/index.htm: “VRML97 Specification, ISO-IEC
14772-11997,” Web3D Consortium (1997).

12. http://www.robotic.dlr.de/STUDENTS/Martin.Rohr
meier/robot/robot.html

13. Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Berners-Lee, T.: “Hypertext Transfer Protocol --
HTTP/1.1,” RFC 2068, UC Irvine, Digital Equipment
Corporation, M.I.T. (1997).

