
Shared Virtual Reality Interior Design System
Tomi Korpipää123, Koichi Minami3,

Tomohiro Kuroda13, Yoshitsugu Manabe13, Kunihiro Chihara13

1 TAO Nara Research Center
2VTT Electronics, Oulu, Finland

3 Nara Institute of Science and Technology
Tomi.Korpipaa@ele.vtt.fi, {koich-mi, tomo, manabe, chihara}@is.aist-nara.ac.jp

Abstract

Traditional methods in interior design usually lack
depth and sense of realism, as well as require the
designer and the client to meet in one place. These
problems can be solved by utilizing shared virtual
reality in the design process. This paper proposes an
interior design system using remote heterogeneous
virtual reality platforms. Using the system, the designer
and the client can work together without the need to
meet in the same place. The proposed system can be
used to greatly enhance the feeling of presence.

To realize a useful shared virtual environment, a
portable graphics engine is required to allow running the
system in a number of hardware configrations, allowing
using the resources available. Also, a smart network
protocol is needed to ensure smooth operation and avoid
unnecessary delays. This paper introduces a portable
and configurable 3D engine developed for the system as
well as a non-locking network protocol to realize the
shared space.

Keywords: Shared, Virtual Reality, Network protocol,
Interior design

1 Introduction

The idea for the system was initiated from the notion of
hardships in modern interior design. Nowadays interior
design is usually made by the designer and the client
both being in the same place, which requires some
traveling for at least one of them. Traditional methods
also lack depth and sense of realism and require quite a
bit of imagination to comprehend what the result
actually would look like in the real environment.

To solve this problem, this paper proposes an interior
design system using heterogeneous virtual reality
platforms. Using the system, the designer and the client
can work together without the need to meet in the same
place. The designer can stay in his office and the client
in a place convenient for him, for example nearest place
offering a virtual reality platform, or even at his own
home. Moreover, the designer can access extensive
furniture database right in his office. This paper
introduces a test arrangement of the proposed system.

The proposed system can be used to reduce the
problems mentioned by greatly enhancing the feeling of
realism. However, developing such a system has several
aspects and a number of technical problems. The main
topics in this paper are the graphics engine and the
network protocol developed for the system.

2 System Overview

The system under development aims to realize a
network protocol and a 3D graphics engine that allow
the same virtual space be used in two or more remote
systems even of significant performance difference. In a
trial-and-error situation such as interior design, the
network protocol has to be able to maintain the
coherency of the virtual space dependless on what users
are doing in separate environments. Graphics engine on
the other hand has to be easily portable to different
operating systems and visualization systems.

The system allows client users to perceive the same
space at the same time, ie. in real-time. The users are
also able to see each other as avatars, move inside the
virtual space and communicate through the avatars.
Users are also able to make modifications to the virtual
space, such as add, remove and move the furniture, and
the changes can be perceived by all clients almost
simultaneously.

3 Test System Equipment

The test system arrangement uses two remote
immersive Virtual Reality platforms. One end of the
system is a CYLINDRA [1] at the Information Science
Department building at Nara Institute of Science and
Technology (NAIST) in Nara, Japan. The other end is
an Immersive Multi-Display System in
Telecommunications Advancement Organization of
Japan Nara Research Center (TAO NRC) near Nara
Institute of Science and Technology. These two Virtual
Reality platforms are connected via a 150Mbps optical
network. Picture of the test system arrangement on a
whole can be seen in figure 1.

NAIST’s CYLINDRA system consists of 6 CRT video
projectors and an 8-CPU SGI Onyx2 with a 2-graphics
pipe InfiniteReality2 graphics subsystem. Display is a



Fig 3. Simulated view from cylindrical display setting

Fig 4. Photo of a scene in CYLINDRA

Fig 2. CYLINDRA display setup

Fig 1. Test system arrangement

330-degree cylindrical wall, 6 meters in diameter and
2.4 meters high; see figure 2. CYLINDRA can produce
stereo view for LCD shutter glasses by altering image
for left and right eye. A simulated view from cylindrical
display setting can be seen in figure 3 and an actual
photo in figure 4.

The Immersive Multi-Display System consists of 8
LCD video projectors, 8 400MHz Pentium II PCs and a
fast local network. Display consists of back wall, left
and right side wall and a partial front floor; see figure 5.
Stereo view can be produced for polarized glasses using
2 video projectors with polarized lenses for each screen,
one computer handling the output of each projector. In
the test arrangement only 3 projectors and 3 computers
are used, as stereo view for this platform is not
implemented and floor screen is not used. A simulated
view from the Immersive Multi-Display System display
setting can be seen in figure 6 and an actual photo in
figure 7.

4 3D Engine

Nowadays, there are several types of virtual reality
platforms, consisting of different kinds of displays,
computers and operating systems. To make an
application, especially a shared application, really
usable, it must be easily portable to several different
platforms instead of having to engineer it separately for
each platform. This kind of portability requires a special
graphics engine that can be compiled and configured to
almost any kind of system without too much work or
extra investments for 3D simulation software such as
IRIS Performer [2] or Sense8 WorldToolKit [3].

The main application of the system under development
is the 3D Engine. It is the part of the system that handles

the graphical simulation and user interfaces, and uses
the network protocol for sharing the virtual space.

The 3D Engine has to be portable, scalable and easily
configurable to allow using it in several different
systems and display configurations. Portability and
scalability set serious restrictions for technologies that
can be used, and easy configurability calls for ability to
control almost all things through configuration files or
at run-time.

At the moment, 3D Engine is programmed in C using
OpenGL [4, 5] for graphics routines and GLUT
(OpenGL Utility Toolkit) [6, 7] and GLX (OpenGL for
X Window System) [8, 9] for window system dependent
code used for rendering window and input device
handling.

GLUT was originally chosen as the only window
handling code to be used in the engine because of its
availabity to several operating systems [7]. However, it
has some serious restrictions, namely no support for



Fig 5. Immersive multi-display system display setup

Fig 6. Simulated view from immersive multi-display

Fig 7. Photo of a scene in immersive multi-display system

Fig 8. Heterogeneous system arrangement

CYLINDRA

IMMERSIVE MULTI-DISPLAY SYSTEM

HELP CLIENT HELP CLIENT

NETWORK
SERVER

MAIN
CLIENT

MAIN
CLIENT

TC
P/IP

TCP/IP

UDP UDP

SCREEN 1 SCREEN 2 SCREEN 3

SCREEN 1

SCREEN 2

SCREEN 3

SCREEN 4

SCREEN 5

SCREEN 6

multiple CPUs or graphics pipes. This makes GLUT
unsuitable for certain systems. CYLINDRA, which is
used in the test system arrangement, is one such system.
As GLUT would be able to utilize only one of the eight
available CPUs, the overall performance is poor. Also,
the InfiniteReality2 graphics sybsystem has two
graphics pipes, of which GLUT could utilize only one.
In CYLINDRA platform this means that only 3
projectors could be used and only half of the display
space covered. Due to these restricitions, native window
handling code, namely GLX, was added to be used in
such X Window Systems GLUT is not suitable for.

Depending on hardware and display configuration,
different display handling methods have been
implemented into the engine. In a system with a large
virtual desktop, which is mapped into separate monitors
or screens, one continuous window is created and
divided to sections to fit the monitors/screens. Each

section in the window can be adjusted as a whole
through the configuration files, but the sections cannot
be tuned individually. This method is usable with
GLUT. Snapshots in figures 3 and 6 have been taken
using this method.

In case of separate computers handling the drawing of
each screen, the drawing is divided into main clients and
help clients. Using this method, the main client handles
all the actual work, including handling user input and
communicating with the network server to handle scene
sharing, and sends screen update commands using either
UDP or TCP to the help clients, which only do drawing
and nothing more. Whether to use UDP or TCP can be
changed through the configuration files. In a normal
case UDP provides better performance. Each screen,
drawn by a separate client, can be adjusted individually
using the configuration files. This method is the most
flexible of all implemented methods and is usable with
GLUT. Photo in figure 7 is from a setup using this
method.

The third method is using GLX and is usable only in X
Windows systems as such. It is meant to be used only in
systems for which GLUT is unsuitable for, namely
systems with more than one graphics pipe and/or
multiple CPUs. In this method an X client is created for
each separate screen and they can be adjusted as a
whole, not individually. Currently the engine supports
maximum of 3 graphics pipes and 9 window, but will be
upscaled later. Photo in figure 4 is from a setup using
this method.

Figure 8 depicts the test arrangement in terms of the
display handling method used.

The 3D Engine has been succesfully tested in a number
of different configurations, including IRIX 6.5, Linux,
Windows 95, 98, 2000 and NT 4 in computers ranging
from SGI O2 through several different laptop and
desktop PCs to SGI Onyx2. Performance of the engine
is, as expected, quite poor in non-3D-accelerated
systems and ranging from adequate to very good in a
properly 3D-accelerated up-to-date system. Some frame
rates in different configurations can be seen in table 1.



Table 1. Some performance values

MONITOR - ONE WINDOW fps : avg (peak)

640 x 480, no textures, no shadows light load (1000 polyg.) medium load (10000 p.) heavy load (50000 p.)

366MHz, Windows 2000, no 3D acc. 15.8 (20.4) 13.1 (20.4) 8.8 (13.0)

800MHz, Windows 2000, 3D acc. 105.6 (111.1) 86.6 (111.1) 81.7 (111.1)

180MHz MIPS R5000 O2, IRIX 6.5, 3D acc. 18.2 (25.8) 13.9 (25.1) 3.4 (5.1)

640 x 480, textures, shadows light load (1000 polyg.) medium load (10000 p.) heavy load (50000 p.)

366MHz, Windows 2000, no 3D acc. 11.2 (14.5) 8.1 (13.1) 6.8 (10.9)

800MHz, Windows 2000, 3D acc. 80.6 (111.1) 64.5 (111.1) 30.4 (50.8)

180MHz MIPS R5000 O2, IRIX 6.5, 3D acc. 10.2 (12.8) 7.4 (12.8) 2.9 (4.1)

IMMERSIVE DISPLAY - MULTIPLE WINDOWS fps : avg (peak)

CYLINDRA (6 windows, stereo) light load (1000 polyg.) medium load (10000 p.) heavy load (50000 p.)

1024 x 768, no textures, no shadows 93.2 (166.7) 91.7 (166.7) 11.9 (18.5)

1024 x 768, textures, shadows 36.9 (55.6) 25.4 (47.6) 3.5 (5.8)

Immersive Multi-Display System light load (1000 polyg.) medium load (10000 p.) heavy load (50000 p.)

640 x 480, no textures, no shadows 68.2 (90.9) 51.1 (90.9) 26.9 (45.5)

640 x 480, textures, shadows 54.5 (90.9) 46.7 (90.9) 6.2 (10.8)

For single-window monitor tests used parameters are as
follows : view angle 90°, field of vision 73.8° and
medium draw distance. As can clearly be seen in the
table, the performance is good as long as the complexity
of the scene remains tolerable. The system as such,
while usable, is not very user-friendly in very complex
design situations, such as designing a large office with
hundreds of complex desks and chairs.

5 Network Protocol

5.1 Overview

In sharing a virtual space through a network, coherency
control, which means keeping consistency of the virtual
space between multiple remote locations, is one of the
most important subjects. Many different methods for
coherency control have been proposed over time [10,
11, 12, 13, 14]. The methods can be categorized in two
main types : methods using exclusion control and
methods not using exclusion control.

Protocols utilizing exclusion control allow only one user
to access the virtual environment at any one time. As
locking and unlocking, before accessing the virtual
environment and after the operation is finished, require
a little time, exclusion control causes delays in system
operation. Also, it is not a very user-friendly solution, as
only one user can operate each locked object at a time,
forcing others to wait. Protocols not using exclusion
control result in a tag-of-war -situation when several
users are accessing the same object at the same time
[10].

In a trial-and-error situation like interior design,
restrictions in both aforementioned types of concurrency

control pose a problem. To address this problem, a
protocol that realizes simultaneous and restriction-free
access for multiple users has been developed. The base
idea of the proposed protocol is not to prevent a conflict
before it happens, but to resolve it afterwards by user’s
discussion. If separate users’ operations for an object
causes a conflict, the conflicting object is duplicated to
tell the users there is a conflict to be resolved.

For example, a designer and a customer move the same
piece of furniture at the same time. This causes the
mentioned piece of furniture to be duplicated, indicating
there has been a conflict. The designer and the customer
can then discuss which choice is better, and either delete
one or both, or leave them both as they are. Using this
mechanism, user's operations are realized immediately
locally, dependless of possible delays in the network.

5.2 Managing Virtual Environment

In the proposed protocol, virtual environment is
expressed by a tree of objects. All objects, which will be
called nodes in this context, in the tree have specific
identifying information. The information in each node
includes node identification number for identifying the
node in the tree, data of the appearance and placement
of the node, such as object name, position and
orientation, and the information needed for coherency
control, such as version number based on the value of
the logical clock and name of the last modifier. See
figure 9.

Node identification number is used by the 3D Engine
for indicating the object being modified by a user. It is a
unique number and is given to the node in creation.
Position and orientation data are given as offset values
from parent object's position or orientation. Version



Fig 9. Expressing the virtual environment

Fig 10. Updating version number and last modifier

Fig 11. Network model

number and last modifier of the node are updated when
the node is modified by a local or remote user. Updating
the version number and the last modifier is done not
only to the modified node, but also all it’s children and
the node on the path from modified node to the root
node. See figure 10.

Object name works as a link to the geometry data of the
object. In the proposed protocol, all geometry data is
stored in an object database and can be accessed using
the object name.

5.3 Network model

The protocol is based on client-server model, using one
or more clients to provide interface for users and one
server to manage the virtual environment, including
coherency control. All clients and the server have
information of the current virtual environment as a tree
structure. TCP/IP is used for data transfer between
clients and the server. See figure 11.

Clients provide interface through the 3D Engine for
creating, moving, rotating, and deleting objects. When
user modifies an object, the client updates current tree
strcuture and sends the information concerning the
modification as a message to the server. The message
includes the type of operation, identification number of
the modified node, modifying parameters, current
version number and current last modifier.



Fig 12. Node identification number translation

Fig 13. Conflict detection



Server manages connections from clients, data
distribution to all clients, and coherency control. When
the server receives a message from a client, it does the
modifications specified in the message on its own tree
structure before sending the message to other clients. In
case of node duplicatioon, the node identification
number is sometimes different between server and
client, as the duplicated node gets a new identification
number. See figure 12. For keeping track of different
numbers, server has a node identification number
translation table for each client, and it is used to
translate the identification number whenever a message
is sent or received. The translation table is updated
when an object is duplicated. When the client receives a
message from other clients via the server, it updates its
own node.

5.4 Coherency Control

For detecting a conflict, all messages exchanged
between a client and the server have a version number
and information of last modifier. Information of last
modifier is the name of the client who last modified the
node. Upon receiving a message the version number and
the last modifier in the message are compared with the
version number and the last modifier of the
corresponding node in the local tree structure. If the
values in the message are different from corresponding
node’s values in the local tree, the node is known to
have been modified between the time of creation and
the time of having received the message, hence
implicating a conflict. See figure 13.

When a client detects a conflict, it ignores the message
and destroys it. When the server detects a conflict, it
performs node duplication and starts undoing the entire
tree until the required node with correct version number
and last modifier is found. By this method the existance
of the required node is proved. After undoing and
locating the required node, the node is duplicated.
Nodes to be duplicated are decided in the same way as
updating version number and last modifier, as can be
seen in figure 10. Duplicating multiple nodes is required
for handling nodes having parent-children
relation.When a node is duplicated, the server updates
the node identification number translation table.
Translating node identification number is done so that
each client considers the locally modified object
primary. After duplicating nodes, the server executes
the modification required in a message. Then it redoes
the whole tree excluding the duplicated nodes. At this
point, the tree has two sets of nodes, one for each user’s
requirements. Last, the server sends duplicated nodes to
the clients as messages. The clients receiving this
message add the duplicated nodes into their own tree
structures.

5.5 Advantage of the protocol

The proposed protocol provides a new kind of design
procedure. The designer and the client can move the
furniture around with no limitations from the protocol.
After a conflict happens, the designer and the client can
discuss which solution is better and modify the scene
accordingly. The new procedure can reduce the number
of required discussions compared to a case where
traditional coherency control method is used.
Discussion, in this context, is thought as a sequence of
voice communications during design process.

Using a traditional coherency control method only one
solution in a conflict situation can be displayed at a
time. If either party wants to see the result after both
possible modifications, two separate discussions are
needed, one after each modification. Using the proposed
protocol, both parties can make their own modification
at the same time and only one discussion is needed in
the end of the modifications.

6 Conclusion

To realize useful interior design system between
heterogeneous virtual reality platforms, a portable 3D
Engine and a network protocol are presented. The 3D
Engine realizes the platform-independency among
different platforms, such as a CYLINDRA and a PC-
based immersive multi-display system. The network
protocol realizes sharing a virtual space without locking
while maintaining coherency, making the
communication uninterrupted and smooth.

Possible future step in developing the system is
changing one end of the system to a portable see-
through head-mounted display system. This portable
system allows client to stay at his home and see the
design using augmented reality, adding virtual furniture
into the real space making it even easier to imagine the
final result.

References

1. http://www.solidray.co.jp

2. http://www.sgi.com/software/performer/

3. http://www.sense8.com/products/wtk.html

4. http://www.sgi.com/software/opengl/

5. Woo M., Neider J., Davis T., Shreiner D.,

“OpenGL Programming Guide, 3rd Edition” (1999)

6. http://reality.sgi.com/mjk_asd/glut3/glut3.html

7. Kilgard M., “The OpenGL Utility Toolkit (GLUT)

Programming Interface, API Version 3”, (1996)

8. http://www.sgi.com/software/opensource/glx/



9. Woo M., Neider J., Davis T., Shreiner D.,

“OpenGL Programming Guide, 3rd Edition”,

pp.632-633 (1999)

10. Leigh, J. et al., “CAVERN: A Distributed

Architecture for Supporting Scalable Persistence

and Interoperability in Collaborative Virtual

Environment”, Journal of Virtual Reality Research,

Development and Applications, pp.217-237 (1997)

11. Singhal, S., Michael, Z., “Networked Virtual

Environments”, Addison Wesley (1999)

12. Lea, R. et al., “Scaling a shared virtual

environment”,

http://www.csl.sony.co.jp/person/rodger/ICDCS/icd

cs2.html (1996)

13. Katayama, A. et al., “Collaborative CyberMirage:

A Shared Virtual Environment with High

Photoreality and Mutual Awareness”, Transaction

of IPSJ, pp.1484-1492 (1998)

14. Broll, W., “Distributed Virtual Reality for

Everyone”, A Framework for Networked VR on the

Internet”, http://fit.gmd.de/pages/VRAIS.pdf

(1997)


