
namic analysis using the time integration scheme is

indispensable. Although several time integration

schemes have been introduced for dynamic analysis,

these existing schemes are not suitable for virtual reality.

Because the virtual reality applications require efficiency

and stability for the interactive and real-time simulation,

while the scientific analysis gives priority to the accuracy

in the calculation.

In this study, a new efficient and stable time integration

scheme was proposed to overcome these problems.

Dynamic Analysis for Realistic Motion Simulation
in Virtual World

Daisuke Tsubouchi
*
, Tetsuro Ogi** and Hirohisa Noguchi

*Department of Mechanical Engineering, Keio University
3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan

tsubo@noguchi.sd.keio.ac.jp
**MVL Research Center, Telecommunications Advancement Organization of Japan

/ IML, Univirsity of Tokyo
***Department of System Design Engineering, Keio University

Abstract

In this study, in order to realize real-time motion simula-

tion in virtual environment, a new efficient time integra-

tion scheme for finite element method was proposed. The

proposed method is called 'iterative Newmark' method.

In this method, it is not necessary to calculate the inverse

of coefficient matrix like the explicit time integration

scheme and has a stability criterion of the conventional

Newmark method. This method was applied to several

examples of the motion simulation, and the real-time and

realistic motion was realized.

Keywords : Finite Element Method, Dynamics, Real-

time Simulation, Virtual Reality

1. Introduction

In order to construct realistic virtual worlds, it is impor-

tant to simulate the realistic movement of the objects.

For instance, the virtual objects should be moved accord-

ing to the law of motion and be deformed by applied

force.

By using the finite element method, the realistic move-

ment and deformation can be simulated. As for the static

analysis using the finite element method in virtual

world, several studies have been presented, especially in

the field of haptic rendering[1]. However it is impossible

to simulate the dynamic motions (deformation, transla-

tion, rotation etc.) of virtual objects by only using the

static analysis. In order to realize these motions, dy-

2. Methods

In general, two kinds of time integration schemes are

utilized for finite element method. One is an explicit time

integration scheme such as central difference method,

and the other is an implicit time integration scheme such

as Newmark-β method. Although the explicit time

integration scheme spends low computation cost as it

does not need to calculate the inverse matrix, its stability

is conditionally guaranteed with a small time increment.

On the other hand, the implicit time integration has

opposite features.

In this study, a new time integration method based on

the Newmark-β method with the advantage of explicit

methods was proposed.

2.1. Overview of time integration schemes

t t t t t t t t t t t t t t+ + + + + + ++ + =M u C u K u F
V V V V V V V
&& &

()t t t t t t

t

2+ += + +u u u u
V V

V
& & && &&

{ }t t t t t t t

2t
t (1 2) 2

2+ += + + − β + βu u u u u
V V

V
& && &&V

Eq. (3) and Eq. (4) are finite difference formulas. The

parameter β determines the characteristics of stability

and accuracy of this algorithm.

By substituting Eq. (3) and Eq. (4) for tu and tu& in Eq.

(2), the following equation is obtained

(2)

(4)

(3)

t t t t t t t t

2t
t

2+ + + ++ + β
M C K u

V V V V

V
&&V

t t t t

t

2+= − +
C u u

V

V
& &&

()t t t t t t t

t
t 1 2

2+ +

 − + + − β +

K u u u F
V V

V
& &&V

(5)

Assuming that tu , tu& and tu&& are known from the

previous step of the calculations, t t+u
V

&& is determined by

solving Eq. (5). And the t t+u
V

& and t t+u
V

 are deter-

mined from Eqs. (3)-(4).

However, this method can hardly be applied to virtual

reality applications, because it costs much computational

time to calculate the inverse of coefficient matrix in Eq.

(5).

On the other hand, the Newmark-β method has an

2.3 Iterative Newmark method

Moving the term of a stiffness matrix in the left hand side

of Eq. (5) to the right hand side, Eq. (5) is rewritten as Eq.

(6).

2.3.1 Overview of iterative Newmark method

()t t t t t t t

t
t 1 2

2+ +

 − + + − β +

K u u u F
V V

V
& &&V

(6)

In this equation, the acceleration term in the right hand

side is represented by ()1
t t+u
V

&& , and the acceleration term in

the left hand side is represented by ()2
t t+u
V

&& . ()1
t t+u
V

&& means the

first predictor, and ()2
t t+u
V

&& the second. Then the n th

predictor (n th iteration) can be represented using the

(n-1) th after predictor as follows:

()
t t t t

2
t t

t

2+ + ++

M C u
V V V

V
&&

()
t t t t t t

12
t t

t
t

2+ + += − + − β
C u u K u

V V V

V
& && &&V

()
t t t t

n
t t

t

2+ + ++

M C u
V V V

V
&&

()
t t t t t t

n 12
t t

t
t

2+ +
−

+= − + − β
C u u K u

V V V

V
& && &&V

()t t t t t t t

t
t 1 2

2+ +

 − + + − β +

K u u u F
V V

V
& &&V

(7)

2.3.2 Prediction of the acceleration term

In this method, it is important to predict appropriate

initial acceleration term ()1
t t+u
V

&& , If an inappropriate initial

predictor were given, t t+u
V

&& could not be converged.

where tM is the mass matrix, tC is the viscous damping

matrix, tK is the stiffness matrix, tF is the applied force

vector and tu&& , tu& and tu are the acceleration, velocity

and displacement vectors, respectively. When the elapsed

time is t t+V , Eq. (1) is represented by Eq. (2).

advantage of unconditionally stability under the condition

of
1

4
β ≥ . In this study, we propose iterative Newmark

method that has a stability criterion equivalent to the

conventional Newmark method and does not need to

calculate the inverse of coefficient matrix like the explicit

time integration scheme.

(1)t t t t t t t+ + =M u C u K u F&& &

2.2. Newmark-β method

The discrete equation of motion is formulated by the

following equation[2].

When the Newmark-β method is used, tu and tu& are

approximated as follows:

In this equation, since t t+M
V

 and t t+C
V

can be diagonal-

ized, ()n
t t+u
V

&& can be obtained without calculating the inverse

matrix. By iterating this calculation until convergence,

t t+u
V

&& is finally obtained.

(8)

This assumption would be appropriate on the condition

that the acceleration changes slightly.

2.3.2 Convergence of iteration

In this section, we discuss the convergence condition of
()n
t t+u
V

&& . By subtracting Eq. (7) from the equation for

(n+1), Eq (9) is given.

Therefore, as for the convergence condition in this

method, the following equation is finally obtained.

The convergence condition is given as follows:

where
iλ is the i th eigenvalue of the coefficient matrix

in the right hand side of Eq. (9).

() ()n 1 n
t t t t

+
+ +−u u
V V

&& &&

() ()()t t t t t t

1
n n 12

t t t t

t
t

2+ + +

−
−

+ += + −β −
M C K u u

V V V V V

V
&& &&V

(9)

()() t t

n
t t

n
++

→∞
=u u

VV
&& &&lim

(10)

(11)

1λ ≤imax (12)

In order to evaluate the effectiveness of this proposed

iterative Newmark method, we implemented this algo-

rithm in several kinds of motion simulations of the object

in the virtual environment. We used a workstation (SGI

Octain R12000 300MHz× 2, IRIX 6.5).

() ()()n n 1
t t t t

n

−
+ +

→∞
− =u u 0lim V V

&& &&

3.2 Judgement of convergence

3.1 Hardware

3. Experiment

Based on Eq. (10), we regarded that ()n 1
t t

+
+u
V

&& is converged

to t t+u
V

&& on the following condition.

If t t+u
V

&& is not converged after more than 100 iterations,

the time step tV is reduced in half in order to avoid

divergence.

() ()n 1 n 5
t t t t 10+ −
+ +− ≤u u
V V

&& && (13)

()
t t t

1
t t 2 −+ = −u u u

VV
&& && &&

However, if we can choose a valid prediction, the solu-

tion may be converged in smaller number of iterations.

In order to realize a real-time simulation, calculation

performance more than 40 Hz is required.

When the time step tV is enough small, we can assume

approximately that the acceleration changes linearly.

Therefore, in this method, the first prediction was given

as follow:

3.3 Analysis model

As for the analysis model, simple spring model was

used. Fig. 1 shows the example of the analysis model.

This model consists of springs, dampers and masses,

and the springs are intersected partially in order to

represented a share stiffness. Though the model is not

completely accurate for the purpose of the strict scien-

tific analysis, it may be used to simulate the deformation

of the object in the virtual world.

Fig. 1 Analysis model
spring

damper

mass

 In this experiment, the proposed method described in

the previous section was applied to three types of

movements, such as deformation, translation and

rotation. Fig. 2 shows the condition for the deformation

test. Fig. 3 shows the condition for the movement test

that includes the translation and the deformation. Fig. 4

shows the condition for the movement that includes

deformation, translation and rotation. We adjusted the

virtual world and the real world by sleeping computa-

tion, because the calculation time is much faster than the

time in the real world in this example.

3.4 Boundary condition

Continuous Load

Fig. 5 Movement of deformation

0 [sec]

0.2 [sec]

0.1 [sec]
In the deformation test, the load was applied to the object

from the upper side continuously in time. The movement

of the object simulated by the proposed method was

shown in Fig. 5. In Fig. 5, after the vibrations, the

equilibrium state was obtained between applied forces

and the reaction forces.

In this experiment, since the computation time for one

step was shorter than tV (=0.001[sec]), a real-time

simulation was realized. This spring model was simply

assumed to be the linear, however, the simulated move-

0.3 [sec]

0.5 [sec]

1.0 [sec]

Fig. 6 Movement of deformation and translation

0 [sec]

0.6 [sec]

1.05 [sec]

1.1 [sec]

1.2 [sec]

2.0 [sec]

Fixed against floor

Fig. 2: Deformation test

Collision against floor

 Gravity

Gravity

Collision against floor

Load (time=0[sec])

Fig. 3: Translation and deformation test

Fig. 4: Rotation, translation and deformation test

3.5 Motion simulation

Fig. 7 Movement of deformation, translation, and
rotation

0 [sec]

0.2 [sec]

0.4 [sec]

0.5 [sec]

0.6 [sec]

1.0 [sec]

0

5

10

15

0 0.2 0.4 0.6 0.8 1

In the deformation, transition and rotation case, the

object was dropped with the applied force from the side

direction. In Fig.7, the simulated movements of the

virtual object was shown. In this experiment, the rotation

on the floor is somewhat unnatural. For example, the

objects rotated to the wrong direction in this model,

because we didn�t take the friction against the floor and

the balance of the angular moment into account. In order

to achieve more realistic motion including rotation, the

strict physical model should be required. However, in this

experiment, the real-time calculation was achieved by

using the proposed method.

8 1.732 0.051

27 2.093 0.219

64 10.065 0.597

Node iterative Newmark
method [ms]

Newmark-β
 method [ms]

Table 1: Computation cost for the solution of t t+u
V

&&

3.6 Comparison of results by Newmark-β method
and iterative Newmark method

We compared the average computation costs for solving

t t+u
V

&& the both in the Newmark-β method and the

iterative Newmark method. Table 1 shows the result.

The numerical experiments were conducted under the

same condition of deformation simulation in Fig. 2. The

analysis model shown in Fig. 1 was used, and the

number of nodes was varied from 8 to 64. In the both

cases, the computation costs were increased according to

the increase of the number of nodes. And, in any case,

the computation cost in the iterative Newmark method

was smaller than the Newmark-β method.

3.7 Iteration number and computation time

We simulated several movements by changing the time

step tV and the iteration number to the convergence

was counted. In this test, the analysis model shown in

Fig.1 was used and the number of nodes was 27. Fig. 8,

Fig. 9 and Fig. 10 show the iteration numbers of the

calculation for each test. In these figures, the iteration

numbers for tV =0.01[s] and tV =0.001[s] were com-

pared among these movement tests.

From these results, the number of the iteration was

obviously decreased when the fraction size of the time

step was small. In addition, it was noted that the itera-

tion number became large, when the acceleration was

changed suddenly at the collision point against the floor

as shown in Fig. 9.

t
V

=
0.

00
1[

s]

Fig. 8: Iteration numbers of the case in Fig. 2
time[s]

it
er

at
io

n
nu

m
be

r

t
V

=
0.

01
[s

]

collision againg the floor

Fig. 9: Iteration numbers of the case in Fig. 3

time[s]

it
er

at
io

n
nu

m
be

r

t
V

=
0.

01
[s

]
t

V
=

0.
00

1[
s]

0

5

10

15

0 0.5 1 1.5 2

ment of the object seemed to be natural.

In the translation and deformation case, the object was

dropped according to the gravity. In Fig. 6, the simulated

movement of the object is shown. In this experiment, the

simulated movement seemed to be natural, though the

strict physical model, such as the friction between the

object and the floor, was not implemented.

0

5

10

15

0 0.5 1 1.5

Fig. 10: Iteration numbers of the case in Fig. 4

time[s]

it
er

at
io

n
nu

m
be

r

t
V

=
0.

00
1[

s]
t

V
=

0.
01

[s
]

0

20

40

60

80

100

0 20 40 60 80

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0 20 40 60 80

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80

Furthermore, we examined the computation cost and the

iteration number in detail. The analysis model of Fig. 1

was used, and the number of nodes was changed from 8

to 64.

In Fig. 11, we can see that, in the case of tV =0.01[s],

the computation cost was increased according to the

increase of the node number. Then we compared the

computation cost for each iteration (Fig. 12) and the

average iteration number (Fig. 13).

In Fig. 12, the computation cost for each iteration was

almost the same between in the case of tV =0.01[s] and

tV =0.001[s]. The computation cost increased linearly,

when the analysis model were bigger.

However, we found from Fig. 13 that the iteration

number became larger when tV =0.01[s], and the total

computation time depended on the iteration number.

In order to realize a real-time simulation, the total

computation time (iteration number times each computa-

tion time) must be shorter than the time step. Therefore,

we must carefully examine the relation between tV and

the iteration number to realize the real-time simulation.

In addition, we must also examine the more appropriate

prediction method of the acceleration term.

co
m

pu
ta

ti
on

 ti
m

e
[s

]

it
er

at
io

n
nu

m
be

r

co
m

pu
ta

ti
on

 ti
m

e
[s

]

number of nodes

Fig. 12 Computation time to reach the solution of

 the next iteration ()n
t t+u
V

&&

Fig. 11 Average Computation time to reach the
solution of the next time step t t+u

V
&&

Fig. 13 Iteration number to reach the solution of

 the next time step t t+u
V

&&

tV =0.01[s]

tV =0.01[s]

tV =0.001[s]

tV =0.001[s]

tV =0.01[s]

tV =0.001[s]

number of nodes

number of nodes

4. Conclusions

In this study, in order to realize real-time deformation

analysis in virtual reality, a new efficient time integration

scheme for finite element method was proposed.

This method named �iterative Newmark method� is

suitable for virtual reality applications, because this

method has the result by computational efficiency and

stability, compared with the Newmark-β method.

This method was applied to several motion simulations

such as deformation, movement and rotation of the

object, and the real-time calculation was achieved by

using the proposed method.

References

1.Koichi, HIROTA., Toyohisa, KANEKO.: Representa-

tion of Soft Objects in Virtual Environment, ICAT 98,

pp.59-62(1998).

2. Belytschko,T. and Thomas,T.J.R.: COMPUTA-

TIONAL METHODS FOR TRANSIENT

ANALYSIS,NORTH-HOLLAND,Chap.2 (1983)

