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Abstract 
In this paper, we propose an efficient and easy-to-
implement method for the interactive placement of 
virtual objects in a panorama.  In particular, we 
developed a systematic approach for estimation of the 
camera parameters using a single panorama with 
reasonable human-computer interactions. 
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1. Introduction 
There are two common approaches to build a VR world: 
the image-based approach (e.g., Quick-Time VR, 
Surround Video, Real VR, and IPIX) and the model-
based approach (e.g., AutoCAD, 3D Studio).  The 
panorama is the most popular image-based approach 
which creates an omni-directional view by seaming 
photographs.  Image-based approach can generate photo-
realistic scenes.  However, it is difficult to allow the user 
to view the scene from arbitrary viewing directions.  
Model-based approaches construct the 3D models of the 
real world objects and then generate views by rendering 
the 3D models.  It allows the users to interactively view 
the virtual world from arbitrary viewing directions.  
However, most model-based approaches use manually-
created virtual objects, and thus the generated virtual 
world is usually not realistic enough for sophisticated 
objects. 

A hybrid VR system is a good solution to exploit both 
the advantages of these two types of approaches.  In this 
paper, we proposed a simple and systematic method to 
combine the panorama generated by an image-based 
approach and the virtual objects generated with a model-
based approach.  To solve this image-composition 
problem, two major issues have to be considered: (1) 
geometry consistency, and (2) photometry consistency.  
In this paper, we focus on the problem of geometry 
consistency.  However, our system can also generate 
realistic shadows of the virtual objects by setting light 
positions manually.  In particular, we allow a user to 
interactively place the 3D graphic objects in arbitrary 
positions of the 3D world photographed in a single 
panorama in a geometrically-reasonable way. 

Many methods have been proposed for the composition 
of virtual objects and images or videos [1][4][8].  
However, no approaches are suitable for composition of 
virtual 3D objects and panoramas because most of the 
above approaches have to use the disparity information 
generated by the point correspondences among images.  
Nevertheless, a panorama is a wide-angle static image, 
while there is no disparity information allowed to be used 
in a static image.  Although some methods can extract 
3D structures from panoramas [7][9], at least two 
panoramas are required. 

2. Criterions of Specific Shape 
In this paper, we developed a method which can insert 
virtual 3D objects in a single panorama.  To insert 3D 
graphic objects into a panorama while maintaining their 
geometry consistency, it is necessary to know the rigid 
transformation between the object coordinate system and 
the coordinate system defined by the panorama.  This 
problem is referred to as the camera pose estimation in 
the computer vision community.  Basically, estimation of 
the camera parameters from a single image is ill-posed if 
there is no additional constraints on the reference objects.  
  
What we try to solve in this paper is to estimate camera 
parameters using a single panorama.  To provide suitable 
geometrical constraints, our basic idea is to allow the 
users to draw an appearance of the exemplar shape on 
the panorama via his/her own perception to the scene.  
Based on the exemplar shape drawn by human, the 
camera parameters can be computed by using the related 
geometrical constraints.  In principle, we hope that the 
exemplar shape satisfies the following criterions: 
 
I. It can provide sufficient constraints for 

computing the camera parameters. 
II. It is as simple as possible, so as to release user’s 

burden for drawing it.  That is, the constraints 
provided by it are also not redundant. 

III. It is intuitive and easy to be perceived by 
human. 

 
To find an exemplar shape satisfying the above criterions, 
the shapes with metric information are not considered 
because that they are not easy to be perceived by human.  
Standard camera calibration [5] or pose estimation 
methods [3] use the 3D control points with metric 
information that the distances between each pair of the 



   

control points have to be given in advance, and thus they 
are not suitable for our work.  In this paper, we use the 
shape without metric information.  In particular, what we 
need is to use the geometric information less constraining 
to obtain to human perception, such as parallelism, 
orthogonality of lines, and so on.  Inspired by a previous 
work [2], we select the specified shape to be three lines 
joining at a single point and are orthogonal to each 
other.  It can also be treated quite naturally as the origin 
and the three axes of a 3D Euclidean coordinate system.  
In fact, such a coordinate system may appear in many 
natural scenes (for example, the one shown in Figure 
4(b)).  It is also easy and intuitive for the users to 
hallucinate such orthogonal axes (for example, the one 
shown in Figure 5(b). 
 
3. Camera Parameter Estimation with A Single 
Panorama 

In this section, we show that the exemplar shape selected 
above provides sufficient constraints for computing the 
camera parameters.  There are usually two types of data 
structures for storing a panorama: the cylindrical type 
and the spherical type.  Without lost of generality, we use 
the cylindrical type for the illustration in the sequel.  
Nevertheless, our method can be easily generalized to the 
spherical type. 
 
3.1. Intrinsic Parameters 
 
The intrinsic parameters (e.g., focal point and focal 
length) of any de-warped views of a panorama can be 
computed directly from the de-warping process for either 
cylindrical or spherical types of panoramas.  In fact, the 
focal point (i.e., the point which is the orthogonal 
projection of the lens center in the image plane) of a de-
warped image is set to be in its center in almost all cases.  
The focal length (in pixels) of a de-warped view can be 
approximately computed by P/(2π) where P is the 
number of pixels of the width of the panorama. 
 
The intrinsic parameters can also be computed more 
accurately.  In fact, an important property of a panorama 
is that the intrinsic camera calibrations are recovered as 
part of the panorama construction [9].  That is, the 
intrinsic parameters can be directly computed from the 
panorama.  More precisely, consider the panorama 
recorded in the surface of a cylinder as shown in Figure 
1(a).  A panorama viewer allows the user to see the 
contents of the panorama from arbitrary viewing 
directions specified by the user.  The panorama viewer 
de-warps the panorama recorded in a cylinder to an 
image in a plane, as shown in Figures 1(a) and 1(b).  The 
de-warped image (DI) is photographed in a rectangular 
plane tangential to the cylinder.  The perspective imaging 
equation of a DI can be written as follows: 
 

PtRKp ]|[ 1333 ××=λ                          (1) 
 
where P is the homogeneous coordinate of a 3D point, p 
is the homogeneous coordinates of its 2D image point, R 
and t are rotation and translation with respect to the 

world coordinate system, and K is an upper-triangular 
matrix consisting of the intrinsic parameters, where 
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In most cases, the coordinate system selected by the 
panorama viewer to represent the pixel grids in DI is 
orthogonal, and thus s=0.  In addition, the Panorama 
viewer usually de-warps the panorama to a square patch, 

and hence the aspect ratio 
v

u

f
f

=1.  Also, the tangential 

point is always set to be the center of the de-warped 
image in a panorama viewer, as shown in Figure 1(c).  
Therefore, the image center of DI, (u, v), is (0, 0).  If 
there are N pixels in a horizontal scan-line of DI, as 
shown in Figure 1(c), then the pixel resolution in DI is du 

= Nf /)
2

tan(2 θ
.  Consequently, 

 

fu = du/f = N/)
2

tan(2 θ .                      (2) 

 
3.2. Extrinsic Parameters 
 
Once the intrinsic parameters of a de-warped image are 
obtained, what we need is to compute the extrinsic 
parameters of it, i.e., the rotation and translation between 
the camera coordinate system and the Euclidean 
coordinate system drawn by the user.  This problem is 
referred to as the camera pose estimation in the 
computer vision community.  Given a trihedral with the 
angles between each pair of lines being 90°.  By using 
the results shown in [6], we can compute the camera pose 
by solving a second-degree polynomial equation system.  
In this paper, we derive this result in another way.  The 
detailed procedure of computation is shown in the 
following. 
 
Given three lines joining at a point P0 and orthogonal to 
each other, as shown in Figure 2.  We select three control 
points, P1, P2, P3, in the three lines, respectively.  
Assume that the homogeneous coordinates of their image 
points are p0, p1, p2, p3 respectively.  Based on these 
three lines, we define an orthogonal object coordinate 
system that the origin is P0, and the X, Y, and Z axes are 
defined to be along the directions from P0 to P1, P0 to P2, 
and P0 to P3, respectively.  Let ||P0P1||=a， ||P0P2||=b， 
||P0P3||=c, then the coordinates of P0, P1, P2, P3 are [0 0 
0] T, [a 0 0] T, [0 b 0] T, [0 0 c]T, respectively.  From (1), 
we can list the following four equations: 
 

KtKRPp += 000λ  = Kt                         (4) 

KtKRPp += 111λ                            (5) 

KtKRPp += 222λ                            (6) 

KtKRPp += 333λ                            (7) 



   

 
Since there always exists a scale factor which can not be 
computed, we set 0λ =1 (i.e., the distance from the lens 
center to P0 is the unit length) and it will not affect the 
camera pose estimation results.  Hence, (4) becomes 
 

Kt = p0 
 
From the above equation, we can solve the translation 
vector,  
 

t =K-1p0                              (8) 
 
where K is given in (3). 
 
Substituting (8) to (5), (6), (7) and multiplying K-1 to the 
left side of (5), (6), (7), we can obtain the following 
equations: 
 

1011
1 )( RPppK =−− λ                          (9) 

2022
1 )( RPppK =−− λ                         (10) 

3033
1 )( RPppK =−− λ                         (11) 

 

Since the three vectors
→

10PP ,
→

20PP ,
→

30PP  are orthogonal 
to each other.  By computing the inner products of each 
of the two equations of (9), (10), and (11), we can obtain 
the following equations: 
 

0)()( 022
1

011 =−− −− ppKKpp TT λλ         (12) 

0)()( 033
1

022 =−− −− ppKKpp TT λλ        (13) 

0)()( 033
1

011 =−− −− ppKKpp TT λλ        (14) 
where 

�
�
�

�

�

�
�
�

�

�

= −

−

−−

100
00
00

2

2

1
u

u
T f

f
KK                      (15) 

 
There are three unknowns, 321 ,, λλλ  in (12) - (14).  
Since the left side of (12)-(14) are bilinear forms, 
expanding (12)-(14) yields the following three bilinear 
equations: 
 

0142131122111 =+++ aaaa λλλλ               (16) 

0243232223221 =+++ aaaa λλλλ                (17) 

0343331323131 =+++ aaaa λλλλ               (18) 
 
where aij are the coefficients computed from K and P0, 
P1, P2, P3 by expanding (12)-(14).  The equations (17) 
and (18) yield that 
 

22321

24323
2 aa
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+
−−=

λ
λλ                            (19) 

and 

32331

34333
1 aa
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+
−−=

λ
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By substituting (19) and (20) to (16), we can obtain a 
quadratic equation in terms of 3λ : 
 
a11( 34333 aa +λ )( 24323 aa +λ )  

– a12( 34333 aa +λ )( 22321 aa +λ ) 

– a13( 24323 aa +λ )( 32331 aa +λ )  

+a14( 22321 aa +λ )( 32331 aa +λ ) = 0                      (21) 
 
Hence, 3λ  can be obtained by solving (21).  After 

solving 321 ,, λλλ , the rotation matrix R can be obtained 
using (9) - (11) because the three columns of R are the 
unit vectors of )( 011

1 ppK −− λ , )( 022
1 ppK −− λ , 

)( 033
1 ppK −− λ , respectively.  In addition, a, b, c are 

the lengths of these three vectors, respectively. 
 

4. Experimental Results 
We have implemented a user interface which allows the 
users to draw an appearance of the exemplar shape and 
composite the virtual graphic objects in a geometrically-
consistent way.  Figure 3(a) shows an example of the 
three axes of a Euclidean coordinate system drawn by the 
users.  In particular, a cuboid will appear in our interface 
if the user drawing makes the solution of (21) exist, as 
shown in Figure 3(b). 

Some experimental results are shown in Figures 4 and 5 
to clarify the effectiveness of our method.  Notice that in 
both experiments we only have to estimate the camera 
parameters from a single de-warped view, the same 
parameters can then be used for other views while 
maintaining highly-convincing geometric consistencies 
of the generated composition views. 

5. Summary 
In summary, we developed a simple and intuitive 
approach in this paper for inserting geometrically 
consistent virtual 3D objects in a single panorama.  To 
provide sufficient and not redundant geometrical 
constraints, what a user required to do is simply to draw 
the three axes of a 3D Euclidean coordinate system in the 
de-warped image according to his (or her) perception to 
the scene.  Then, our method allows the user to 
interactively place 3D graphic objects in arbitrary 
positions of the 3D world photographed in the panorama. 
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Figure 1.  (a) A panorama recorded in the surface of a cylinder.  A panorama viewer de-warps the 
panorama to a planar image (DI).  (b) The top view of (a).  (c) The intrinsic parameters of DI. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The object coordinate system defined in three orthogonal lines. 
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(a)                                                                (b) 

Figure 3.  (a) An appearance of the three axes of a 3D Euclidean system drawn by a user.  (b) A cuboid will 
appear in our interface if the user drawings allow the solutions to exist. 

 
 
 

 
 

(a) 

   
(b)                                            (c)                                            (d) 

Figure 4.  (a) A panorama.  (b) Camera parameter estimation with the “front view” using the three axes of an 
Euclidean coordinate system drawn by human.  Notice that such a coordinate system exists in the scene explicitly, 
and a user can easily identify it easily via his (or her) perception.  A virtual chair is then inserted in (c) the “front 
view” and (d) the “side view” (using the same set of estimated camera parameters). 
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(a) 
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Figure 5.  (a) A panorama of the Chung-Cheng Memorial Hall.  (b) Three axes of the Euclidean coordinate 
system drawn by human for camera parameter estimation.  Notice that although such a coordinate system does 
not exist explicitly in the scene, a user can still draw it implicitly via his (or her) perception. 
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(c) 
 

Figure 5 (continue).  (c) The insertion of an animation of a bouncing ball in the panorama.  Also, the same set of 
camera parameters estimated from the Euclidean coordinate system drawn in Figure (b) is used for all views. 


